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Abstract. Internet of Things (IoT) and Machine Learning (ML) have

been two among the most popular research topics for the last two decades.

The benefits that these two technologies offer are indeed prominent.

Nevertheless, the combination of these two breakthrough technologies can

even bring more groundbreaking advantages to society, also transforming

the classic IoT to an enhanced version called Internet of Intelligent Things

(IoIT). In this paper, a large-scale evaluation of this enhanced concept

is conducted, analyzing all of its core aspects, as well as explaining the

advantages and potentials of this groundbreaking concept. Nonetheless,

many challenges, that may act as an impediment on the benefits received

through the IoIT, exist. In our large-scale evaluation, these challenges

are detected and carefully examined, also suggesting ways to effectively

overcome them. Data Mining (DM) is the process of extracting useful

insights from large volumes of data. In this paper, we explain how ML-

based DM techniques and methodologies could be utilized for the effective

and efficient extraction of insights and valuable information from complex

sequential data volumes.

Keywords: Internet of Intelligent Things, Big Data, Machine Learning,

Data Mining.
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1 Introduction

Internet has certainly changed the way that people communicate. Over the

last couple of decades, Internet has been in a constant state of evolution [1].

The Internet has been evolved from a network of linked HTML documents

that resided on top of the Internet architecture, to Web 2.0, which enabled

two-way communication, user participation, collaboration and interaction,

to the under construction Semantic Web and sometimes referred as Web

3.0. The main goal of the Semantic Web is to mark up web content in a way

that makes it understandable by machines, allowing devices and search

engines to behave more intelligently (as machines will be able to process

and share data on their own, without the need for human intervention).

Internet-based technologies, such as social networking services, blogs, and

wikis became essential to modern social interaction as well as for global

business [1]. The next wave in the era of computing will be outside the

realm of the traditional desktop. In the Internet of Things (IoT) paradigm,

many of the objects that surround us will be on the network in one form

or another [2].

Machine-to-machine communication concept has been the main concern

of the scientific community for the last decades. The possibility of having

a framework that will enable the aforementioned concept (machine-to-

machine communication) over the Internet has led researchers to envision

the benefits of bringing more machines online and allowing them to

participate in the web as a vast network of autonomous, self-organizing

devices. Machine-to-machine communication is the basic building block of

Internet and IoT.
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As there is not a universal definition for the IoT, the scientific community

struggles to think or find one that best describes this breakthrough

technology. After exploring the massive, in terms of size, literature related

to IoT we found a well descriptive definition. As stated in [1], the core

concept for “IoT, is that everyday objects can be equipped with identifying,

sensing, networking and processing capabilities that will allow them to

communicate with one another and with other devices and services over

the Internet to achieve some useful objectives”. Due exactly to the massive

scientific interest on IoT, the definition and the core objectives of IoT will

continue to change the lives of people worldwide, whether its effects are

obvious to the user or not. However, it has to be noted, that the core

concepts underlying IoT and machine-to-machine communication, are not

new. For example, Radio Frequency IDentification (RFID) and Wireless

Sensor Networks (WSNs) have been excessively used in industrial and

manufacturing contexts for tracking large-ticket items, such as cranes and

livestock. Furthermore, machine-to-machine communication, is the core

idea that Internet is built upon and in which clients, servers, and routers

communicate with each other.

What is new about IoT, is the evolution of these technologies (in

terms of the number and kinds of devices) as well as the interconnection

of networks of these devices across the Internet [1]. The term ”Internet

of Things” was coined by Kevin Ashton in a presentation to Proctor

and Gamble in 1999. In paper he published in 2009 [3], with title: That

‘Internet of Things’ Thing, explained how IoT concept came in life, also

mentioning that we need to empower computers with their own means
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of gathering information, so they can “sense” the world for themselves,

in all its random glory. He also states that RFID and sensor technologies

enable machines to observe the environment and understand the world,

without the limitations of human-entered data. It concludes his one-page

paper by saying that the IoT has the potential to change the world, just

as the Internet did, and maybe even more [3].

RFID and sensor network technologies will rise to meet IoT challenges,

in which information and communication systems are invisibly embedded

in the environment around us [2]. As a result, enormous amounts of

data will be produced by IoT that have to be stored, processed and

presented in a seamless, efficient, and easily interpretable form. Having such

amounts of data coming from different sensors, different Data Mining (DM)

algorithms could be deployed in order to extract valuable information. Due

to the massive amounts of cheap and different information type sensing

IoT devices, such as mobile devices, aerial (remote sensing), software

logs, cameras, microphones, RFID readers and WSNs, the already big

amounts of data (Big Data) keeps multiplying as we speak [4]. The world’s

technological capacity for information storing is doubled approximately

every 4 years. According to Makrufa et al. [5], the global data volume

will grow exponentially from 4.4 zettabytes to 44 zettabytes between

2013 and 2020. By 2025, IDC predicts that 163 zettabytes of data will

exist [6]. The main concern of any company that wants to make an impact

is how to process this massive amount of data and produce valuable

information that could be used for the company’s benefit. Joe Kaeser,

CEO of Siemens, who took part in a technology forum in Stockholm said



IoIT: A Large-Scale Evaluation 7

that “Data is the oil, some say the gold, of the 21st century - the raw

material that our economies, societies and democracies are increasingly

being built on”. Nowadays, it is (or it should be) crystal clear, that data

analytics (the engine for analysing this massive amounts of data) could

lead organisations and companies to valuable information and insights that

will be used for making serious money. Relational database management

systems and software packages used to visualize data often have difficulty

handling Big Data [7]. Analysing such an enormous amount of data will

require an intense amount of computation power provided by thousands

of servers. These massive computation requirements could be satisfied

through Cloud Computing [8] which integrates monitoring devices, storage

devices, analytics tools, visualization platforms and client delivery [2].

Cloud Computing will enable in this way an end-to-end service provisioning

for businesses and users to access applications on demand from anywhere.

Fifth generation (5G) of cellular mobile communications, is currently

the under development latest technology succeeding 4G (LTE/LTE Advanced),

3G (UMTS) and 2G (GSM) systems. Some basic 5G cellular networks

promises are: (a) high data rate, (b) reduced latency, (c) energy saving,

(d) cost reduction, (e) higher system capacity, and (f) massive device

connectivity. As a result, 5G cellular networks are expected to massively

expand today’s IoT in terms of boosting cellular operations, IoT security,

minimizing latencies, facing existing network challenges and driving the

Internet future to the edge.

Artificial Intelligence (AI) and Machine Learning (ML) received great

interest in the last two decades. ML is the study of algorithms and
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mathematical statistical models for effectively learning or extracting

features from massive datasets known as “training data”. Learning from

training data, will lead to intelligent machines that are capable of solving

complex sequential data classification problems based on their training

experience, ideally with high accuracy. As mentioned before a couple of

paragraphs, IoT produces a massive amount of data that if they effectively

been processed, precious conclusions will be gathered. Furthermore, deploying

trained ML algorithms on any kind of IoT device leads on what is said to

be Internet of Intelligent Things (IoIT). IoIT consists of intelligent devices

that can perform classification or prediction actions based on sensed input

data and by exploiting their integrated intelligence (ML trained models).

In this paper, we provide an extensive analysis of what IoIT is, carefully

studying each of its main components and underlying technologies that

will actually bring IoIT in life. Different applications of IoIT, potential key

enabling technologies (e.g., 5G cellular networks, Bluetooth, Wifi, etc.),

and the ML concept will be carefully and extensively examined as they

play a critical role in IoIT’s future.

The rest of this paper is organized as follows. The core aspects of

IoT are discussed in Section 2; these aspects include a brief explanation

of IoT as a concept, as well as an providing details regarding the most

prominent enabling technologies for the effective deployment and operation

of IoT. In Section 3, we discuss the IoT’s Big Data era aspects, firstly

describing the characteristics of Big Data and then explaining the different

challenges that should be effectively faced for the successful operation of

IoT. In Section 4, we stress the role of advances in ML, briefly explaining
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the core categories and characteristics of different ML algorithms, as

well as discussing the role of datasets and performance metrics used for

evaluating the accuracy of a proposed ML-based model, and, in Section 5,

we provide a detailed explanation of the different ways and methodologies

that this novel combination of IoT and ML could be performed, also giving

specific directions for specific fields and application areas. Later on, in

Section 6, we discuss the application of DM tools for extracting useful

information from enormous complex sequential data volumes, generated

by the massive amounts of devices participating in IoT, also describing

a typical DM process as well as providing specific DM application areas

where the use of ML models will contribute to the rise of the revenue

or the minimization of the cost of particular organization. Finally, we

discuss our future research directions and conclusions regarding this work

in Section 7, also mentioning the implications of our work.

2 The Internet of Things (IoT)

2.1 Understanding Internet of Things as a Concept

IoT has been excessively studied. Since the term IoT was coined by Kevin

Ashton in 1999 [3], the scientific community has shown a great interest on

studying this concept and examining the underlying technologies that IoT

will be based on. The basic concept of IoT is that every day devices such

as vehicles, home appliances, mobile phones and every other electronic

device, will have the ability to connect, interact and exchange data. Due

to the massive number of interconnected electronic devices that have (or

will have) networking capabilities, IoT essentially comes in life. As already
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mentioned, the IoT definition, core objectives, and underlying technologies

will continue to evolve as long as the scientific community will continue

to study IoT-related aspects. IoT extends Internet connectivity to the

edge (i.e., beyond standard devices such as laptops, desktops, smartphones

and tablets), making all electronic devices accessible through Internet for

remote monitoring and controlling. However, it has to be noted that the

IoT became possible due to the emergence of multiple technologies, such

as wireless technologies, microelectromechanical systems, microservices,

commodity sensors, and the evolution of internet’s underlying technologies.

Traditional fields of embedded systems, WSNs, control systems, automation

(including home and building automation), and others, all contribute to

enabling IoT. The main reason why IoT received great interest from the

scientific community the last two decades, is the high impact that IoT will

have on several aspects of everyday life, from healthcare to environment

monitoring, to whatever anyone can think of [9]. The numerous applications

that could be developed based on IoT led the scientific community on

envisioning the advantages and the potentials of this concept. Domotics

(i.e., smart homes), assisted living, e-health, enhanced learning, environment

controlling and nano-particles measuring are only a few examples of

possible application scenarios in which the new paradigm will play a

leading role in the near future. Furthermore, from the business perspective

the benefits and consequences of IoT operation are equally visible affecting

various aspects of industry such as manufacturing, logistics, process

management and enhancing of transportation of people and goods [9].

In addition to the above, US National Intelligence Council included IoT
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in the top six “Disruptive Civil Technologies” with potential impacts on

US national power, noting that “by 2025 Internet nodes may reside in

everyday things – food packages, furniture, paper documents, and more”.

The potentials and the enormous advantages of successfully employing such

an advanced technological framework (IoT) will surely enhance the quality

of life and improve the worldwide economy [10]. Nevertheless, many threats

that coexist with IoT should be effectively tackled. Security and privacy

related risks are the most common, as this technology distributes security

risks to everyday objects, extending in this way the range of those risks

far more widely than before. In addition, many technological challenges,

Fig. 1. In this figure, the Internet of Things (IoT) concept, is shown.

such as the interoperability, adaptation, and autonomous behaviour of

interconnected devices should also be tackled. Furthermore, scalability

and resource efficiency issues exist, as the “things” composing the IoT are
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mainly low resource devices in terms of computation power and energy

capacity.

In order for someone to understand the capabilities and limitations

of IoT, multiple survey papers related to IoT aspects should be carefully

examined to perceive the current status of research progress in this

particular field. In [1], authors provided a classification/distribution of

literature (shown in Figure 2) in six (6) major categories: (a) technology,

(b) applications, (c) challenges, (d) business models, (e) future directions

and (f) overview/surveys, receiving 42%, 25%, 17%, 3%, 2% and 11%

respectively, of the total percentage of the articles studied [1]. From the

aforementioned results, it is obvious that the larger amount of literature

related to IoT, is mainly focused on the technology aspects that will

enable this concept called IoT. The 2nd larger portion of the literature is

related to different applications that would be based on IoT to achieve

certain goals. I bet that you can easily think of a bunch of applications

that will provide high value and solve some serious everyday problems

or make peoples’ lives easier. In [1], many of the papers studied are

related to application areas and they are heavily focused on supply chains

and social applications due to the established role of specific IoT key

enabling technologies technologies like RFID in supply chains and the way

big interest of humanity on social media. The 3rd larger portion of the

literature is concerned about the different challenges that the IoT will

face so to find a way to tackle them before they even happen. Again, as

you can easily imagine, there are plenty of challenges, mainly focused on

information security and privacy, that need to be tackled in order for the
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IoT to take place. As the IoT extends internet’s reachability to the edge,

new privacy policies as well as different information security algorithms

and suites that will protect users’ data are considered critical, especially

in the GDPR [11] age that we live today. It is worth mentioning, that

legal and accountability issues received the least coverage in the challenges

category, perhaps because these are also unresolved issues in the classic

Internet paradigm.

Fig. 2. Distribution of articles by major category [1].

Fig. 3. Reviewed literature by publication type [1].
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Observing the results shown in Figure 3, much of the work being done

on IoT is through technical and engineering conference papers and edited

volumes, something which is much more commonplace and encouraged

than it is in other fields.

When we refer to IoT term we essentially mean billions and trillions of

interconnected devices that interact with each other, sense the environment

and operate in an autonomous way. The addressing of such an enormous

volume of devices is still an open question. The scientific community

should develop effective and efficient –in all terms– addressing schemes for

the successful communication of the devices participating in IoT. Thus,

smart connectivity with existing networks and context-aware computation

using network resources is an indispensable part of IoT [2]. Based on the

massive and continuous growth of wireless technologies, such as Bluetooth,

Wi-Fi, and 5G, the ubiquitous information and communication networks

is already evident. In later sections, a brief explanation on how these

technologies contribute to the realization of IoT and IoIT, will be given.

The evolution of these technologies as well as the large amounts

of interconnected devices that adopt them, has led to a rapid growth

of IoT. As clearly stated in [2], in 2011 the number of interconnected

devices has overtaken the actual number of people in planet earth. By

the time the article [2] has been written, 9 billion interconnected devices

existed and that number expected to reach 24 billion devices by 2020.

According to the GSMA, this amounts to $1.3 trillion revenue opportunities

for mobile network operators alone spanning vertical segments, such as

health, automotive, utilities and consumer electronics. In Figure 4, the
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interconnection of different sectors and objects in real-life aspects are

shown, also giving some application domains based solely to the scale of

the impact of the data generated and the value derived from that data.

As already mentioned, IoT builds upon existing technologies, such as

RFID and Wireless Sensor Networks along with standards and protocols

to support machine-to-machine communication, such as those envisioned

for the semantic web [1]. In the next section, the technologies that will

enable and boost IoT are explained in detail.

Fig. 4. Internet of Things schematic showing the end users and application domains
based on the scale of impact of the data gathered [2].

2.2 IoT Key Enabling Technologies

There are plenty of IoT key enabling technologies that were designed

considering IoT objectives (e.g., Zigbee) and others that emerged in order
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to fulfil IoT requirements (e.g., Bluetooth 4.1 and 5). The combination of

these technologies will lead to the interconnection of heterogeneous systems

and devices and thus allow ubiquitous computing, one of the main aspects

of IoT. Nonetheless, it has to be noted, that these different standards

and protocols should be interoperable allowing devices deploying different

protocols and created from different vendors to seamlessly communicate

with each other. Furthermore, these standards and solutions should emerge

and properly combined together in order to meet the IoT technical Key

Performance Indicators (KPIs) [12]. In the subsections below, the state-of-

the-art IoT key enabling technologies are explained in depth.

2.2.1 First forms of IoT connectivity and identification: The

first forms of IoT connectivity and identification standards and protocols

have been proposed a long time ago, with the legacy Radio Frequency

Identification (RFID) technology and later, the Wireless Sensor Networks

(WSNs) to be the most popular ones [12]. As the number of potential IoT

applications and their impact on the industry and the society in general

was realised in the very early stages, the industry as well as any Standards

Developing Organizations (SDOs) struggled to invent and develop new

standardized low power IoT enabling solutions. RFID, barcode, and

intelligent sensors were mainly deployed as the identification and tracking

technologies. RFID uses electromagnetic fields to automatically identify

and track tags attached to objects. These tags contain electronically-stored

information that mainly serves the identification process. There are two

types of RFID tags namely: (a) Passive, and (b) Active. Passive tags collect
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energy from a nearby RFID reader interrogating radio waves. Active tags

have a local power source (e.g., battery) and may operate hundreds of

meters away from the RFID reader. In contrast with a barcode, the RFID

tag does not have to be in line of sight with the reader, so it may be

embedded in the tracked object.

Due to RFID’s low-cost and its ability to identify, trace, and track

devices and physical objects, the RFID system has been heavily deployed

in industries, such as logistics, supply chain management, and healthcare

service monitoring [13,14]. The aforementioned advantages of RFID system

combined with other derived benefits, such as: (a) providing precise real-

time information about involved devices, (b) massively reducing labor cost,

(c) simplifying business process, (d) increasing the accuracy of inventory

information, as well as (e) improving business efficiency and control, have

led this technology to be adopted and used by numerous manufactures,

distributors, and retailers across a large scale of industries. According

to [15], recent development of the RFID technology focuses on (a) active

RFID systems with spread-spectrum transmission; and the underlying (b)

technology of managing RFID applications. RFID and WSNs could be

integrated to improve the real-time tracking and tracing technologies. The

different emerging wireless intelligent sensor technologies further facilitate

the implementation and deployment of industrial services and applications.

To give you a trailer about the sections explaining how IoT and ML could

be integrated to produce IoIT, processing and integrating the data (Big

Data) acquired by intelligent sensors and RFID data, more powerful IoT

based applications can be developed, bringing intelligence to the edge of
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the IoT infrastructure (i.e., to the devices), and converting in this way

the “things” term in IoT to “intelligent things” in IoIT.

2.2.2 Bluetooth Low Energy (BLE): Bluetooth is a standard wire-

replacement (wireless) communications protocol primarily designed for low

power consumption technology and adopted by numerous companies for

short distance and low data rate requirements communication purposes.

Bluetooth, was originally conceived as a wireless alternative to RS-232

data cables. Many applications and different devices rely on Bluetooth

connectivity technology, some of them including: (a) wireless speakers,

(b) wireless headphones, (c) connecting smart phones to cars, (d) wireless

networking between PCs where little bandwidth is required, (e) wireless

communication with PC input and output devices, the most common

being the mouse, keyboard and printer, and many others. One advantage

of Bluetooth technology over the infrared [16], is that the devices that

communicate with each other, do not have to be in visual line-of-sight of

each other as they make use of radio (broadcast) communication system.

However, if not a direct, an indirect wireless path must exist for the radio

waves to propagate from transmitter to receiver [17].

Bluetooth operates at frequencies between 2402 and 2480 MHz, or 2400

and 2483.5 MHz including 2 MHz wide guard bands at the bottom end and

3.5 MHz wide guard bands at the top. Thus, Bluetooth frequency bands are

unlicensed (2.4 GHz short-range Industrial Scientific Medical (ISM) radio

frequency band) but not unregulated. Bluetooth, makes use of a technology

to preserve its signal quality and deal with any interference and noise at
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specific frequency bands that may destroy the carriers (signal’s) useful

information, called Frequency Hopping Spread Spectrum (FHSS). FHSS,

is a method of transmitting radio signals by rapidly switching a carrier

among many frequency channels, using a pseudorandom sequence known

to both transmitter and receiver [18]. Bluetooth divides transmitted data

into packets, and transmits each packet on one of 79 designated Bluetooth

channels, each channel having a bandwidth of 1 MHz. Bluetooth, usually

performs 1600 hops per second, with adaptive frequency-hopping (AFH)

enabled [19] which improves resistance to radio frequency interference by

avoiding crowded frequencies in the hopping sequence.

Fig. 5. BLE’s frequency bands used for exchanging data (blue) and advertising (black).

Bluetooth Low Energy (version 4.1) is an updated, smart, low-energy

version of classic Bluetooth (version 4) that uses 2 MHz spacing, which

accommodates 40 channels [14,21]. In other words, BLE is intended to

provide considerably reduced power consumption and cost while maintaining

a similar communication range with its previous version (up to 50m), and

at the same time aiming at many novel applications that require low-energy

consumption devices.
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To achieve low power consumption, BLE scans only 3 separate channels

(frequencies), for device discovery, connection set up, and broadcast

transmission [20], where the advertising device sends a packet on at least

one of these three channels, with a repetition period called the advertising

interval. As shown in Figure 5, for the advertising frequencies the BLE’s

centre frequencies have been assigned to minimize interference with the

widely used IEEE802.11 channels 1, 6, and 11. Furthermore, the remaining

37 channels are dedicated for bidirectional exchange of data between the

communicating devices. It has to be noted, that BLE quickly sets up new

connections for further minimizing: (a) the interference on the 3 dedicated

advertising channels, and (b) the power consumption required for new

connection set ups [14,21]. BLE makes use of the AFH [19] mentioned

above to reduce sensitivity to interference and multi-path fading [17].

Other low power-solutions, such as ZigBee, 6LoWPAN, and Z-Wave, have

been emerging the same time period as BLE, targeting applications with

multi-hop topology scenarios (Figure 7). On the other hand, BLE currently

supports only single-hop topology (Figure 6), namely Piconets, having

one master node (in Figure 6 the center blue circle ) communicating with

several slave nodes (in Figure 6 the light blue circles), and a broadcast

group topology, with an advertiser node broadcasting to several scanners.

In 2015, the Bluetooth SIG formed a working group mainly focused

on the formation of Bluetooth Smart Mesh to define the architecture for

BLE’s mesh networking. This, will lead to an extended communication

range and simplification of BLE networks for IoT.
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Fig. 6. BLE’s single-hop topology.

Fig. 7. ZigBee’s multi-hop topology.
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Considering all the information given above, regarding BLE, one

can say that BLE was designed keeping in mind the emergence of IoT

concept. The low-energy requirements and cost for devices deploying

BLE as well as the struggle of Bluetooth SIG to standardize a mesh

networking architecture for BLE, clearly shows that BLE is destined to be

a key enabling technology for some short-range IoT applications, such as in

healthcare, smart energy, and smart home domains [21]. BLE is expected to

become a de facto standard for short-range IoT services [22]. As a matter of

fact, all nowadays smartphones shipped worldwide are equipped with BLE

interfaces. As a result, BLE will become the most common communication

technology used from consumer applications, further decreasing the cost

of BLE hardware, also allowing devices equipped with BLE to participate

in all those applications (i.e., smart living, health care, smart building,

and so forth).

2.2.3 ZigBee: Similar to Bluetooth technology (Section 2.2.2) , ZigBee

is a low-cost and low-power standard –supporting wireless tree, star, and

mesh network topologies (Figure 8)– which has been widely applied in

WSNs, also being the first that was deployed and designed for industrial

IoT applications (e.g., for control and monitoring) [22]. ZigBee, was

conceived in 1998, standardized in 2003, and revised in 2006. It builds

on the IEEE802.15.4-2006 Physical (PHY) and Medium Access Control

(MAC) standard specifications [23]. The name refers to the waggle dance

of honey bees after their return to the beehive [24]. ZigBee demonstrated

high energy efficiency based on real-world deployments compared to



IoIT: A Large-Scale Evaluation 23

other standards, as it minimizes the energy needed to transmit a given

information bit maintaining at the same time the signal’s quality. ZigBee,

was designed to be the core standard for the emerging IoT. However, many

IoT applications are expected to exchange only a few bits, and thus, these

ultra rate transmission requirements lead to an enormous link budget and

considerably larger distances of signal propagation and enhanced devices’

(adopting ZigBee standard) coverage [25].

The IEEE802.15.4-2006 MAC layer(s) did not suffice the needs of IoT

applications as its single-channel nature makes it unreliable, especially

in multihop scenarios, where it incurs in a high level of interference and

fading [22]. Furthermore, the IEEE802.15.4-2006 MAC layer(s) have high

energy requirements regardless of the actual traffic [25]. As a result, the

IEEE802.15 Task Group 4e (TG4e) (created in 2008) redesigned the

existing IEEE802.15.4-2006 MAC standard and obtain a low-power multi-

hop MAC better suitable for emerging embedded industrial applications.

The redesigned version of IEEE802.15.4-2006 MAC, namely IEEE802.15.4e

standard [23], defined three new MACs, where the Timeslotted Channel

Hopping (TSCH) mode is the most promising one, facilitating energy

efficient multi-hop communications, while at the same time reducing

fading and interference [22]. Finally, another defining feature of Zigbee is

the provided facilities suite –that builds on the basic security framework

defined in IEEE 802.15.4– for carrying out secure communications, protecting

establishment and transport of cryptographic keys, ciphering frames, and

controlling device. Current ZigBee standard allows for the following three

types of devices:
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Fig. 8. Network topologies supported by ZigBee.

– Coordinator (ZC): The Coordinator device (Figure 8(a)) forms the

root of the network tree and might act as a bridge to other neighbouring

networks. There is exactly one Coordinator in each network since it is

the device that started the network originally (LightLink specification

also allows operation without a Zigbee Coordinator, increasing the

usability of off-the-shelf home products). Coordinator stores different

kind of information about the network formed, also acting as the Trust

Center and repository for security keys.

– Router (ZR): As well as running an application function, a Router

(Figure 8(b)) can act as an intermediate router, passing on data from

other devices and forming in this way the network backbone.

– End Device (ZED): An End Device (Figure 8(c)), is able to communicate

with the parent node (which may be either Coordinator or Router),

but cannot relay data from other devices. The specifications of End

Devices, allows these nodes to be asleep a significant amount of the

time thereby giving long battery life. A ZED requires the least amount
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of memory and therefore, can be less expensive to manufacture than a

ZR or ZC.

2.2.4 Wifi and Low-Power Wifi (LP-Wifi): The first version of

IEEE802.11 standard (Wifi), was released in 1997 without having the IoT

concept in mind. Instead, the main aim of this technology was to provide

high data rates to short distanced devices. The main reason that Wifi has

not been a key enabling technology until nowadays, is the higher energy

consumption and its low energy efficiency compared to other standards,

like BLE that offers shorter propagation distances but has way too lower

power consumption requirements, and ZigBee that supports fairly long

range but has much lower data rate. In order for the Wifi to overcome

the high power consumption requirements that directly affect the battery

life of devices (large drawback for IoT devices), IEEE802.11 community

proposed duty cycling and hardware optimizations achieving in this way

extremely energy efficient solutions. Nevertheless, Wifi’s poor mobility

and roaming support, as well as the fact that its prone to interference by

other standards sharing the same unlicensed 2.4 GHz band (e.g., ZigBee,

Bluetooth, etc.), still prevented it from being one among the most popular

IoT’s key enabling technologies. As a consequence, the use of sub 1 GHz

(S1G) license-exempt bands have been proposed for use and deployment,

by the IEEE 802 LAN/MAN Standards Committee (LMSC). These bands

can propagate to longer distances and are are less prone to noise and

interference, especially in outdoor scenarios, compared to traditional Wifi.

Finally, considering the main objectives of IoT, LMSC proposed the Low-
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Power Wifi (LP-Wifi) for: (a) supporting a large number of devices, (b)

increasing the coverage ranges, and (c) improving the energy efficiency

(and increase as a consequence devices’ battery life) of traditional Wifi

standard.

Considering the IoT objectives and goals, a Wireless Access Point

(WAP) must support hundreds, if not thousands of devices (e.g., sensors

and actuators). Legacy IEEE802.11, was limited by the number of stations

that could be simultaneously supported. IEEE802.11ah, overcomes this

devices densification limit by introducing a novel hierarchical method

which defines groups of stations and allows the support of a large number

of devices [26]. Performance studies regarding IEEE802.11ah, showed

that it is able to support a large set of machine-to-machine scenarios

(e.g., agriculture monitoring, smart metering, industrial automation), also

providing a Quality of Service (QoS) higher than the QoS provisioned

in mobile networks, enabling scalable and cost-effective solutions [22].

Concluding all of the above, LP-Wifi can now serve as a key enabling

technology for IoT successfully meeting the concept’s requirements.

2.2.5 5th Generation Cellular Networks (5G): Cellular networks

standards, like Long-Term Evolution (LTE) have been proposed for

increasing the data rates and minimizing the latency of mobile communication

systems. Nevertheless, these technologies have not been designed keeping

IoT in mind. This, means that they are not well suited for low-power and

low data rate devices such as the devices participating in IoT, leading to

the invention of a large number of new IoT standards. Fifth Generation
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(5G) mobile cellular networks, as well as enhancements of 5G like 5G

ultra-dense cellular networks, aim to provide tremendous higher data rates,

supporting higher capacity demands, further minimizing latencies, and

at the same time aiming to address the limitations of previous cellular

standards, in order for the 5G to become a potential key enabling and

boosting technology for the future of IoT [22]. As clearly stated in [22],

the advent of 5G cellular systems, with the availability of a connectivity

technology which is at once truly ubiquitous, reliable, scalable, and cost-

efficient, is considered to be as the most popular potential key enabling

technology for the global emergence of IoT.

3 Internet of Things and Big Data

3.1 IoT’s Big Data Era

According to [27], the rapid developments in hardware, software, and

communication technologies will lead to a total number of 20-25 billion

interconnected devices by 2020. In addition, as the number of interconnected

devices rises and the technologies become more mature the volume of

data published will increase. As a result, the IoT generates Big Data

characterized by velocity in terms of time and location dependency, with

a variety of multiple modalities and varying data quality. The process of

extracting useful information from this enormous amounts of data, created

daily by participating in IoT devices, is not an easy task. Imagine the

enormous amount of data that a number of sensors gathering different

measurements produces in a daily basis. Business, governments and even
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Non-Government Organisations (NGOs), can benefit by leveraging the

insights offered by Big Data analysis.

Today, data is in fact everywhere. The access in data and information

from just anywhere is also a fact nowadays. The Google searches that

users perform as well as any second they spend on different social media

applications, everything, is converted into data. With the growth of smart

devices (e.g., smart watches, glasses, toothbrushes, etc.) the world has

become a data creation station. As the volume of data grows different

problems about storing, processing, and generally controlling this massive

amounts of data, rise. Before we continue describing Big Data and any

challenges that have to be faced, we have to explain the problems that rise

when it comes to data produced from devices and systems participating

in IoT. According to [28], the key characteristics of the data in IoT era

can be considered as Big Data; and they are as follows:

– Enormous volumes of data (in size of Terabytes, Petabytes, and

even Zettabytes) to be processed, so new effective and efficient mechanisms,

for processing these large amounts data, should be invented.

– Large heterogeneity of data sources and data types to be

processed and integrated (e.g., sensors data, cameras data, social

media data, and so on and all these data being different in format,

byte, binary, string, number, and so forth.), so there is the need for

automatically communicate with different types of devices and different

systems also automating the data extraction process from web pages.

This goal will be largely realized when the interoperability issue is

effectively tackled.
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– Immense complexity of data for knowledge extraction. The valuable

knowledge hidden in this large volumes of data is very difficult to be

successfully extracted. As a result, different data analytics practises

should be exploited for effectively analysing the properties of data and

finding any associations and correlations between them that maybe

exist.

In order for the IoT to be effectively applied, the various challenges

related to Big Data and acting as impediments to the successful operation

of IoT, should be effectively eliminated. As one can easily imagine there

are plenty of challenges when IoT and Big data come together, as the

quantity of data volumes becomes enormous, the quality remains low,

and various different data sources (devices) should easily communicate

and share information with each other. In addition, the data collected

form the devices participating in IoT is heterogeneous, semi-structured,

and many times even completely unstructured. Before mentioning the

main challenges that need to be tackled for the IoT to be operational,

we shall first give a brief definition of the characteristics of Big Data,

according to the field experts. Most experts define Big Data in terms of

the three Vs. You have Big Data if your data meets the following criteria

and characteristics:

– Volume: Big Data is any set of data that is so large that the organization

that owns it faces challenges related to storing or processing it. In

reality, trends like ecommerce, mobility, social media and the Internet
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of Things (IoT) are generating so much information, that nearly every

organization probably meets this criterion.

– Velocity: If your organizations is generating new data at a rapid pace

and needs to respond in real time, you have the velocity associated

with Big Data. Most organizations that are involved in e-commerce,

social media or IoT satisfy this criterion for Big Data.

– Variety: If your data resides in many different formats, it has the

variety associated with Big Data. For example, Big Data typically

include email messages, word processing documents, images, video

and presentations, as well as data that resides in structured relational

database management systems (RDBMSes).

Fig. 9. In this table a brief explanation of the three main characteristics of Big Data,
namely Volume, Velocity and Variety, are shown.
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3.2 IoT’s Big Data Challenges

Considering the above characteristics and criteria describing Big Data

we came up with the following list that briefly describes some major

challenges rising from IoT’s Big Data era.

3.2.1 Dealing With Data Growth: Considering the massive amounts

of data that devices and systems participating in IoT create, one can easily

say that the most obvious challenge associated with Big Data is the storing

and analysing these large volumes of data to produce valuable information.

The amount of information stored in worlds data centres seems to be

approximately doubled every year. Originally, data scientists maintained

that the volume of data would double every two years thus reaching the 40

ZB point by 2020. That number was later bumped to 44ZB when the impact

of IoT was brought into consideration. It has to be noted, that the larger

volume of the data produced is unstructured, meaning that they do not

have a predefined structure according to a database or a protocol’s format

standards. For example, documents, photos, audio, and videos (as well as

other unstructured data) can be difficult to search and analyse. In order

to deal with Big Data, organizations are turning to a number of different

technologies. In particular, technologies like compression, deduplication

and tiering can effectively reduce the amount of space required as well as

the cost associated with the Big Data storage. For the management and

analysis side, tools like NoSQL databases, Hadoop, Spark, and different

Big Data analytics software as well as business intelligence applications

(mainly based on Artificial Intelligence and Machine Learning) have been
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developed to extract the valuable information and insights behind these

large volumes of data (Big Data).

3.2.2 Extract Valuable Information in a Timely Manner: There

is no point on storing Big Data unless there is an underlying purpose for

this action. Organisations and companies store Big Data so to process

them, in a later stage, and produce valuable information and insights to

make a specific prediction about something or –from the business side–

achieve some business goal (e.g., decreasing expenses through operational

cost efficiencies, establishing a data-driven culture, creating new avenues

for innovation and disruption, accelerating the speed with which new

capabilities and services are deployed, launching new product and service

offerings, etc.). There are many valuable insights hidden in Big Data that

can help organizations to become more and more competitive. Nevertheless,

effectiveness and efficiency on data processing is a major aspect. If insights

not extracted within a period of time it would be too late for taking

action on a particular extracted insight. In order to achieve high speed of

insights extraction from Big Data, different organizations and companies

are working on the development of tools that can dramatically reduce the

data processing and report generation times. For example, a framework

proposed to process massive amounts of data in a distributed manner is the

well-known Map Reduce framework [29]. Many organisations are investing

large amounts of money to real-time analytics platforms that will offer

them the capability of immediately responding to different developments

in the marketplace.
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3.2.3 Heterogeneity of Data and Data Sources: A large number of

vendors and companies have stepped-up their game in order to participate

in the upcoming IoT market. Standards describing specific data formats

and protocols for exchanging data between different types of devices do

not exist. As a result, any vendor that produces IoT enabled devices

stores, processes, and shares information with other devices in its own

preferred way. This variety of storage and sharing information ways leads

to challenges in data integration and communication. As data comes

form a lot of different places (e.g., social media streams, email systems,

enterprise applications, etc.) and different vendors, combining all that

data and sharing it among different vendor devices can be an incredibly

challenging task. Despite the existence of many data integration tools,

trying to tackle this problem, the data integration and communication

between different vendor devices problem still remains unsolved.

3.2.4 Data Validation: As data is collected from different sources

and with different formats, validating these data –in terms of correctness

and duplication– is a critical task. For example, in healthcare a hospital’s

Electronic Health Record (EHR) system may have a phone number for a

specific patient, while a partner pharmacy has a different phone number for

the same patient. The process on trying to getting those records to agree,

as well as making sure that data collected from different sources is accurate,

usable, and secure, is called data governance. To solve data governance

challenges policies, protocols, and standards have to be developed covering

different aspects of data such as the aforementioned data heterogeneity
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and data sharing across devices and systems from different vendors and

companies. Ensuring data validation, has a direct impact on the insights

derived from them. Thus, this challenge is considered among the most

important challenges to be faced for Big Data.

3.2.5 Security of Big Data: Security has always been a major concern

when it comes to data and information. As we nowadays live in the GDPR-

age [11], security is among the most critical objectives to be met when

trying to develop any kind of application. In addition, some Big Data

centres can be attractive targets for hackers or advanced persistent threats

(APTs) due to the monetized value of the assets being stored. Information

security algorithms and suites exist that could be used to ensure the

integrity and privacy of any kind of data. However, the implementation of

the security algorithms has to be carefully examined as the most attacks

are heavily based on bugs in the source code. Most organizations nowadays

are forced to deploy identity and access control techniques, data encryption

(e.g., Advanced Encryption Standard – AES), and data segregation (i.e.,

separating the data in different places for resisting and minimizing the

impact of potential data leakage). The security aspect of data produced

by the IoT participating devices should be of great concern as numerous

attacks on non-secured devices have been detected [30].

3.2.6 Energy Efficiency: Energy efficiency is a challenge directly

connected to IoT. However, the problem becomes extremely critical when

being in the IoT’s Big Data era. Devices participating in IoT can be of any

size and ideally the size of a grain of sand. The energy capacity of these
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nano-scale devices is extremely limited so the processing as well as the

forwarding of data should be preserved in the lowest possible levels. For this

reasons, the scientific community has to invent smart routing algorithms for

forwarding this massive amounts of data, depending on application specific

domains (i.e., applications where energy is limited, such as WSNs). In

IoT the topology of a particular network in not stable in any perspective.

Thus, the scientific community has to develop different protocols and

tactics for forming and ad-hoc network and configuring the addressing

and settings of any node (device), and at the same time minimizing the

required power consumption. For example, in ZigBee the addressing as well

as the coordinator, router, and end-node configuration has to be done in a

way that minimizes the power consumption required. Nevertheless, many

techniques and methods have been proposed for recharging the nodes in a

WSN using drones [31], robots, etc. In addition, as 5G cellular networks

is going to be an enabling technology for IoT, the scientific community is

extremely concerned about its energy efficiency. Thus, numerous studies

trying to optimize the energy efficiency aspects in 5G –as well as other

IoT enabling technologies– have been conducted [32, 33]. Finally, a recent

approach requires nodes participating in IoT to perform most computations

within the node, only forwarding the most critical information and thus,

minimizing the power consumption required in small-scale and nano-scale

devices.
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4 Machine Learning

4.1 Machine Learning Core Aspects

Machine Learning (ML) has been one of the most interesting topics for the

last two decades. An enormous amount of related literature and companies

exclusively specialized in ML literally exist. Nowadays, ML (and especially

Deep Learning) has revolutionized peoples’ everyday lives by offering

different kinds of intelligent technologies, such as smart voice assistants,

self driving cars, medical diagnosis, statistical arbitrage, etc. Machine

learning scientists and engineers aim to replicate the learning process as

the human mind does. Machine learning imagines the human brain as a

powerful computer, with a combination of a number of external signals as

inputs, a summation of these signals being the outputs. For the human

mind, the same input as signals would not always result in the same

output in terms of action, behaviour or process. The human physical

neural pathways are adapting and changing as per the experience and

feedback received. While in machine, learning happens when algorithms

are updated independently through calculating input signals and how the

output is determined. Inspired from the interdisciplinary nature of ML

field, we below give a formal definition in order to clearly explain what

exactly ML, is as well as the impact that may have in many difficult and

unsolved problems.

ML is the study and development of algorithms and statistical models

that could be effectively and efficiently used by computer systems to perform

specific tasks (e.g., prediction, classification, etc.), without the need of
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explicit instructions, but rather based on learned patterns and features from

a specific dataset. ML field is under Artificial Intelligence (AI) umbrella.

In particular, ML algorithms are either based on mathematical/statistical

models or Artificial Neural Networks (ANNs), where the later is considered

to be a more powerful approach. Moreover, ML-based models try to infer

information from the sample data given, also known as training data, in

order to perform a prediction or a classification without being explicitly

programmed for that specific task. As already mentioned, ML algorithms

are widely deployed to solve different kinds of problems, such as email

filtering and computer vision, where the development of specific algorithms

is considered impractical due to the variety and diversity of the problem

instances to be solved. It is worth to be mentioned that ML is closely

related to computational statistics, which focuses on making predictions

and forecasting, using classic computer systems. The study of mathematical

optimization delivers methods, theory, and application domains to the

field of ML. For example, Data Mining is a field of study within ML,

and focuses on exploratory data analysis through different algorithms

belonging to ML family.

In many cases, ML is refereed as predictive analytics when it’s being

applied across different business problems. ML has also been used in

tackling many complex sequential data classification problems. For example,

ML has been excessively used and deployed in order to tackle one of

the most difficult problems in bioinformatics namely Protein Structure

Prediction (PSP) problem. PSP is one of the most important goals pursued

by bioinformatics and theoretical chemistry; it is highly important in
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medicine (e.g., in drug design) and biotechnology (e.g., in the design

of novel enzymes). For the sake of reference, Dionysiou et al. [34], have

proposed a hybrid ML approach on trying to solve Protein Secondary

Structure Prediction (PSSP) problem. In particular, the authors combined

two supervised learning algorithms namely (a) Convolutional Neural

Networks (CNNs - ANN-based) and (b) Support Vector Machines (SVMs

– Mathematical/Statistical-based) in order to tackle PSSP problem.

A Convolutional Neural Network (CNN) is a class of deep, feedforward

ANNs that has successfully been applied to analyzing visual imagery

[35,36]. CNNs were inspired by the human visual system, where individual

cortical neurons respond to stimuli, only in a restricted region of the visual

field, known as the receptive field. The receptive fields of different neurons

partially overlap such that they cover the entire visual field. CNNs have

enjoyed a great success in large-scale image and video recognition [37].

This has become possible due to the large public image repositories, such

as ImageNet [36], and high-performance computing systems, such as GPUs

or large-scale distributed clusters [38]. Overall, CNNs are in general a good

option for feature extraction, immense complexity sequence and pattern

recognition problems [34].

Support Vector Machines (SVMs) were introduced by Cortes & Vapnik

[39] in 1995, initially for binary classification problems. SVMs are a

powerful technique for linearly and non-linearly separable classification

problems, regression, and outlier detection, with an intuitive model representation

[39]. SVMs are mathematical/statistical models that try to maximize a

gap between the different classes. After that, based on the gap created



IoIT: A Large-Scale Evaluation 39

between the instances of different classes the middle line is taken as the

optimal separation/decision hyperplane. Both, CNNs and SVMs belong to

supervised learning algorithms which means that the actual category that

each sample belongs in, is given. In the following subsections (4.3, 4.4,

and 4.5) we firstly discuss about the datasets and different performance

metrics used in ML field, and then briefly explain the three main ML

algorithms’ categories.

4.2 Datasets and Performance Metrics

In ML field, it is a common practise to divide the dataset into two subsets

called: (a) training set, and (b) testing set. The (a) is used during the

training process for tuning the parameters of the deployed ML algorithm,

and the (b) is used for testing the actual accuracy of the trained model,

so to conclude about different performance aspects of the proposed ML

model, such as the precision1, recall2, and the well-known F1-score. The

F1-score is the harmonic average of the precision and recall, where an

F1-score reaches its best value at 1 (perfect precision and recall) and

worst at 0. Thus, F1-Score might be a better measure to use if we need to

seek a balance between precision and recall and there is an uneven class

distribution (large number of actual negatives). Validation is probably

one of most important techniques that data scientists use in an attempt

to validate the stability of a proposed ML model (i.e., how well it would

generalize to new data). We need to be sure that out ML-based model

1 Precision is the number of correct positive results divided by the number of all
positive results returned by the classifier.

2 Recall is the number of correct positive results divided by the number of all relevant
samples (all samples that should have been identified as positive).
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has perceived most of the patterns from the training data correct, and its

not picking up too much on the noise, or in other words its low on bias

and variance. As a result, in addition to all of the aforementioned metrics

(i.e., precision, recall, and F1-score), it is nowadays commonplace to used

an extra validation technique called k-fold cross-validation.

Cross-validation is a technique to evaluate ML models by partitioning

the original dataset into a training set to train the model, and a test set

to evaluate it. In k-fold cross-validation, the original dataset is randomly

partitioned into k equal size subsets. Of the k subsets, a single subset is

retained as the validation data for testing the model, and the remaining

k-1 subsets are used as training data. The cross-validation process is then

repeated k times (the folds), with each of the k subsets used exactly once

as the validation data. The k results from the folds can then be averaged

(or otherwise combined) to produce a single estimation. The advantage

of this method is that all observations are used for both training and

validation, and each observation is used for validation exactly once. For

classification problems, one typically uses stratified k-fold cross-validation,

in which the folds are selected so that each fold contains roughly the same

proportions of class labels. In most cased though, 10-fold cross-validation

is used for validating the performance of a proposed ML algorithm.

4.3 Supervised Learning

In Supervised Learning (SL), the ML algorithm is trained to solve a specific

problem, also having the actual results (i.e., the correct answer) for each

training sample. Supervised (as well as Unsupervised learning) algorithms,
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require a dataset to be trained on. In particular, a dataset containing the

training samples as well as the label (i.e., correct prediction/classification)

for each sample is given to the algorithm [40]. For this reason, supervised

learning algorithms are sometimes refereed as learning with a teacher. As a

result, the SL-based algorithm tries to optimize its model representation so

as to minimize an error notion between the output of the network and the

actual/correct answer. SL is mainly a method for function approximation

as a proposed SL-based algorithm tries to tune its own parameters with

respect to the aforementioned error notion for each training sample.

Nevertheless, after successfully training a SL-based algorithm it should

be able to generalize its learned knowledge to completely new/unknown

samples that the algorithm has not seen before [40]. Some algorithms

belonging to SL category are: (a) K-Nearest Neighbours (KNN), (b)

Decision Trees, (c) Linear Regression, (d) Support Vector Machines

(SVMs), (e) Multi-Layer Perceptrons (MLPs), and (f) Convolutional

Neural Networks (CNNs).

4.4 Unsupervised Learning

In Unsupervised Learning (UL), the ML algorithm is trained to group

the samples given in the training set according to different similarity

measures (e.g., euclidean distance, manhattan distance, cosine similarity,

etc.), without having the labels (i.e., actual/correct answer) for each

training sample. Thus, UL-based algorithms try to create clusters or groups

with similar instances without any guidance (i.e., without knowing the

correct answer). As UL algorithms create clusters containing the samples
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that are similar according to algorithm’s eyes, the result is detecting

different correlations and dependencies between the training samples. UL

Fig. 10. In this figure, the way that SL (left) and UL (right) algorithms form the
separation hyperplane and clusters, respectively. The image to the left is an example of
supervised learning; we use regression techniques to find the best fit line between the
features. While in unsupervised learning the inputs are segregated based on features
and the prediction is based on which cluster it belonged.

algorithms are not as popular as SL algorithms mainly due to three reasons:

(a) the range of applications of UL-based algorithms is limited, (b) UL-

based algorithms require larger training times, and (c) the accuracy results

of UL-based algorithms are often lower. For the (a), UL-based algorithms

cannot be used for problems such as forecasting or prediction. This, is due

to the fact that there is not the notion of prediction in the nature of UL

algorithms. Moving forward, UL algorithms require larger training times

(b) as the algorithm itself has to perform some excessive computation

for each new training sample, to compare it with the already-processed

grouped samples or the clusters’ representative nodes, to conclude about

the most similar cluster to assign the new training sample. The (c) is

a little bit ambiguous as UL algorithms perform better in clustering

problems whereas SL algorithms perform well across all kinds of problems.
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Nonetheless, as UL algorithms do not perform well across the same range of

problems as SL algorithms do, it is generally accepted that SL algorithms

accuracy results are higher than UL algorithms.

Some algorithms belonging to UL category are: (a) K-Means, (b)

Kohonen Self-Organizing Map [41], and (c) Autoencoders [42]. In many

cases, UL algorithms are referred as compression algorithms as they

mathematically perform dimensionality reduction of the problem instances

(i.e., the number of training samples) to the number of final clusters.

4.5 Reinforcement Learning

If SL is learning with a teacher, then Reinforcement Learning (RL) is

learning with a critic. In particular, RL is an area of ML mainly concerned

with developing models and more specifically agents that take actions in a

specified environment –which may be static or dynamic– so as to maximize

some notion of cumulative reward [43]. RL is considered as one of the three

ML paradigms, alongside supervised learning and unsupervised learning.

RL algorithms do not have the labels (i.e., correct answers) for each

training samples, but instead they receive a penalty or reward for each

action performed. Thus, the main concern of an agent in RL is to focus

on finding a balance between exploration (i.e., perform an action that

the received reward/penalty in not known) and exploitation (i.e., perform

the action that returns the higher reward based on the agent’s current

knowledge) [43]. The environment is typically formulated as a Markov

Decision Process (MDP) [44], as many RL algorithms for this context

utilize dynamic programming techniques [45]. The main difference between
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Fig. 11. In this figure, the typical framing of a RL scenario is shown. An agent takes
actions in an environment, which is interpreted into a reward and a representation of
the state, which are fed back into the agent.

the classical dynamic programming methods and RL algorithms is that

the latter do not assume knowledge of an exact mathematical model of the

MDP and they target large MDPs where exact methods become infeasible.

4.6 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) have received great interest in the

last two decades. According to [46], ANNs or connectionist systems are

computing systems inspired by the biological neural networks that constitute

animal brains. As the neural part of their name suggests, they are brain-

inspired systems which are intended to replicate the way that humans

learn. ANNs consist of input, hidden and output layers. Hidden layers,

usually consist of units that raise a non-linearly separable problem to a

higher dimension/order so as to become linearly separable. ANNs are ideal

for finding patterns which are far too complex or numerous for a human
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programmer to extract and teach the machine to recognize. ANNs’ ability

to learn from the training samples is also inspired by the humans’ brain

neurons plasticity [47] and resides in the weights which are the connections

between the artificial neurons. Each weight/connection, like the synapses

in a biological brain, can transmit a signal from one artificial neuron to

another. The weight increases or decreases the strength of the signal at

a connection. An artificial neuron that receives a signal can process it

and then signal additional artificial neurons connected to it. In addition,

artificial neurons may have a threshold such that the signal is only sent if

the aggregate signal crosses that threshold. ANNs are most of the times the

best option when trying to develop effective and efficient ML algorithms.

Fig. 12. In this figure an ANN having one input, one output, and two hidden layers, is
shown.
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As all ML algorithms, ANNs learn to perform tasks and solve specific

problems by considering examples, generally without being programmed

with any task-specific rules. For example, in image recognition, they might

learn to identify images that contain cats by analyzing example images

that have been manually labelled as cat or no cat and using the results to

identify cats in other images. They do this without any prior knowledge

about cats, for example, that they have fur, tails, whiskers and cat-like

faces. Instead, they automatically generate identifying characteristics from

the learning material that they process. In most ANN implementations,

the signal at a connection between artificial neurons is a real number,

and the output of each artificial neuron is computed by some non-linear

function (e.g., softmax, relu, etc.) of the sum of its inputs. Signals travel

from the first layer (the input layer), to the last layer (the output layer),

possibly after traversing the hidden layers multiple times. Similar to

mathematical/statistical ML algorithms, ANNs can be trained on solving

specific complex problems using the data (in case of IoT Big Data) collected

by the numerous sensing devices participating in the classic IoT. Next,

the trained ML models can be employed in the devices (i.e., the things)

participating in IoT and thus receiving as a result an enhanced concept

namely Internet of Intelligent Things (IoIT). In this case, energy efficiency

is not a problem, as these trained ML models require minimum power

consumption for classification or prediction purposes.
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5 Applying Machine Learning on Internet of Things

Artificial intelligence plays a crucial role in IoT applications and deployments.

ML and AI have the ability to drive transformative value from the flood of

data generated by IoT devices. Where AI has the ability to quickly extract

valuable insights from the data, ML brings the ability to automatically

identify patterns and detects anomalies in the data, such as temperature,

pressure, humidity, air quality, vibration, sound, etc., derived from smart

sensors and other sensing devices.

We are already living our everyday lives using devices that are offering

technologies based on ML and ANNs. For example, Apple company has

integrated to their products’ central processing unit (cpu) a chip that is

mainly based on ML and ANNs models, namely Neural Engine. Apple’s

designed Neural Engine is built for advanced, real-time ML. This means

that the smart devices incorporating this technology can recognize patterns,

make predictions, and learn from experience, similar to the way that

humans do. The Neural Engine is: (a) incredibly fast, able to perform five

trillion operations per second, (b) incredibly efficient, which enables it

to do all kinds of new things in real time, and (c) incredibly smart, so

users can do things like jump right into immersive AR experiences. This

neural engine also allows for smart searching capabilities, so finding all of

my pictures with cats or dogs will be as easy as typing “cats or dogs” in

the search bar. Furthermore, Apples latest Face ID technology used for

various purposes, such as unlocking or paying with Apple pay, is heavily

based on this Neural Engine as the devices adopting this technology (Face

ID) can recognize your face even if you put on a hat, grow a beard, or
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wear glasses. The ANN deployed for Face ID is modifying its own weights

for training and adopting its knowledge as our face changes. The whole

recognizing and training of the neural engine happens in literally no time.

The same process should be adopted by all vendors and companies that

develop devices that are IoT-enabled. Face ID, smart cities, smart homes,

and smart sensors are just some examples of the potential of this novel

combination of ML with IoT.

Keeping all of the above in mind, some ways that ML can help IoT

industry to succeed its objectives and goals are shown in the below

subsections:

5.1 Automating and Enhancing Data Analysis

As briefly explained above, ML can be effectively and efficiently deployed

for classification, prediction, and analysis processes. One of the biggest

advantages that ML brings to IoT is the automation of analysis of the

enormous amounts of data generated and exchanged. Instead of a human

data analyst going through the tedious process of manually analysing

all these data, looking for patterns and anomalies, a well programmed

and implemented ML algorithm can make this task easy by deploying

completely reversed top-down approach in analysis. In other words, given a

desired output or outcome, the machine can find the factors and variables

that are supposed to lead to this desired output. Thus, data correlations

and dependencies can be easily discovered and tracked by ML models,

where a human analyst wouldn’t have a chance.
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A field that is primarily concerned about how these valuable insights

could be extracted from this massive volume of data (Big Data) created

by the enormous devices participating in IoT, is Data Mining. In Section

6, more details on this field will be given.

5.2 Machine Learning Models for Predictive Analysis

Through an understanding of regular patterns and algorithm updates, the

software becomes self-sufficient to be able to predict the future desired or

undesired events. A system, which is often supervised by a human engineer

or scientist, is automatically triggered by the relevant input data, through

the formula that it came up with all by itself. The software programme

can easily recognize inconsistencies and anomalies that may have taken

human eye ages to discover by just looking at the raw data. In addition, as

explained to Supervised Learning subsection (4.3), the SL-based algorithms

perform a function approximation process that results in a trained model

capable of performing predictions about the future. These trained models

could be easily deployed in data centres and servers receiving data from

sensing devices, to conclude about future situations that the society

may face. Nevertheless, a ML system is not there just to recognize any

abnormal behaviour, but additionally to help the organisations understand

and establish long-term trends bringing together a huge job of processing,

selecting, recognizing, sorting and associating a vast amount of data

collected to make comprehensive and meaningful predictions. Moreover,

predictive ML models could be deployed in IoT sensor scale devices

specialized for minimizing power consumption and thus extend the battery
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life of the small battery capacity devices participating in IoT. For example

in [48], the authors present a solution that employs ML on the edge device

and performs low power transmission through LoRa. More specifically,

the authors mention that by implementing embedded ML with LoRa they

could compress the transmitted data by 512 times and extend the battery

life by three times.

Finally, foreseeing when a machine needs maintenance is unimaginably

important, converting into a huge number of dollars in spared costs.

Companies are now using ML to predict with over 90% accuracy when

machines will need maintenance, meaning huge cost cuttings.

5.3 Personalization of Experience

It is many times absent to our knowledge that ML is in our everyday

lives. For example, eBay, Amazon, and Netflix make use of ML models

for optimizing the items and films or TV shows suggestions to users,

based on the knowledge gained from previous purchases or films that a

particular user may have watched. Furthermore, the Nest Thermostat is a

representative example for the personalization advantages gained from the

combination of ML with IoT, as it utilizes ML for figuring out how to take

in your inclinations for warming and cooling, ensuring that the house has

the correct temperature when you return home from work or when you

get up in the morning. In addition to the Nest Thermostat, ML models

trained/optimized to control different settings can now be deployed to

a wide range of devices participating in IoT, and thus, transform homes

to smart homes, cities to smart cities, vehicles to smart vehicles, and in
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general transform the previously dump (i.e., with no particular intelligence)

devices to intelligent devices. Finally, a ML model trained on each patients

biosignals can be constructed for personalizing the healthcare as well

as optimizing the monitoring of each patient according to its individual

needs.

5.4 Healthcare Optimization

The IoT has opened up a world of possibilities in healthcare sector;

when connected to the internet, ordinary medical devices can collect

invaluable additional data, give extra insight into symptoms and trends,

enable remote care, and generally give patients more control over their

lives and treatment. Thus, in this section we focus on explaining the

potential benefits of IoT and ML in healthcare optimization process. Some

potential applications of the IoT in healthcare sector have been mentioned

in previous sections. Nonetheless, the advantages list becomes literally

enormous when someone takes account of the capabilities and potentials

of ML in addition to IoT.

The IoT in healthcare is a subject that has received great attention

the last few years [49–52]. For example, the home environment monitoring

in healthcare, is completely different, from the classic perspective of

smart home in IoT. A smart home in healthcare, is a system of pervasive

information and communication technologies by which both the home

environment and residents’ interactions with it are unobtrusively monitored

by a center of medical care. Numerous sensors of all types (e.g., cameras,

microphones, pulse oximeters, etc.) are installed in the patient’s house.
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The adoption of ML models and algorithms and thus the fusion of ambient

intelligence to lets say the central processing unit of each smart home,

will provide enhanced signal processing capabilities as well as recognition

of activities or events with higher accuracy. For example, video-based

monitoring is also an important mean to observe the health condition of

patients. An IP camera can send and receive data via a computer network.

Therefore, it is capable of monitoring patients in real time and also

supporting video communication between patients and doctors whenever

needed. In addition, image recognition techniques using ML algorithms

could be added so that the system can recognize abnormal behaviour

of the patient been monitored. In this way, an enhanced intelligent ML

model will immediately inform the patient’s doctor if something is not

going as expected, and thus, maximizing the performance of smart homes

in healthcare.

Moving forward, a particular application that Apple adopted to one of

its products (i.e., smart watch series 4) is the fall detection via wearable.

Many ambient sensor systems have been applied to address different health

issues, such as mental health, emotional state, sleep measures, diabetes,

and Alzheimer’s disease, monitoring individual daily activities for health

assessments and to detect deviation from a user’s behavioural patterns. All

these applications of IoT in healthcare through ambient sensors can easily

be enhanced with the adoption of effectively trained ML models. Moreover,

ML models personalized for controlling a specific patient’s biosignals and

ML models for predicting the demand for medical specialized staff and

medical equipment based on a sensible factor (e.g., month), are just some
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potential applications in IoIT concept. Finally, as clearly stated in [51]

some serious interoperability and security issues exist, preventing us from

receiving the full benefits of this novel combination of ML with IoT in

healthcare sector.

5.5 Intelligent Cities

Over the years, cities are continuously evolving in an attempt to offer

enhanced public services and make peoples’ lives easier. Nonetheless, the

emergence of IoT as a technological concept has made it the core factor

where most of recent smart technologies are based on. From smart traffic

management to smart architecture and energy management and smart

waste management systems, IoT is the core enabling technology that

brings these applications to life. As mentioned in [53], the smart city

vision is about “exploiting the most advanced communication technologies

to support added-value services for the administration of the city and for

the citizens”. Numerous studies have been conducted for analysing and

attempting to formally describe and explain the smart city concept [53–55].

Most of them (if not all) have the IoT as their basic building block. The

benefits that an urban IoT will bring are really motivating, some of them

including: (a) management and optimization of traditional public services,

(b) salubrity of hospitals and school, and (c) preservation of cultural

heritage [53]. For this reason many frameworks (such as the ones presented

in [53] and [55]) for effectively designing an urban IoT have been proposed.

Furthermore, Parera et al. [54] underline that the IoT envisions to

connect billions of sensors to the Internet and expects to use them
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for efficient and effective resource management in Smart Cities. Thus,

the authors investigate the concept of sensing as a service model in

technological, economical and social perspectives and identify the major

open challenges and issues [54]. They finally conclude that the sensing as

a service can be a sustainable, scalable and powerful model as it creates a

win-win situation for all the parties involved. Moreover, the basic building

blocks of smart city IoT Infrastructure are well explained and examined

in various scientific papers. For example, in [55] the sensing Paradigms,

addressing schemes, connectivity models, and Quality of Service (QoS)

mechanisms are described in depth. Considering all of the above, we

nowadays have all the necessary tools and directions for effectively applying

IoT in cities so as to receive as a result the enhanced smart city concept.

Nonetheless, all of the above applications and examinations of IoT in

smart cities do not consider ML as a core intelligence providing technology.

Thus, we make this clarification that if IoT makes previously dump aspects

of our everyday life smart, then the combination of IoT with ML offers

an enhanced intelligent behaviour. Imagine the advanced benefits that

citizens of a particular smart city will enjoy after all previously smart

technologies will be improved in intelligent ones, adopting ML models

that optimize the performance, maximize the efficiency, and minimizing

the errors of the already good –in terms of performance– IoT technologies.

Finally, employing IoT in combination with ML, improves the performance

of all possible applications converting in this way the previously smart

technologies to intelligent ones.
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6 Data Mining for the Internet of Things

ML and Data Mining (DM) have been two among the most interesting

research topics in the last two decades. Nevertheless, these two terms must

not be confused as they mean two totally different things that are both

critical for understanding different fields related to information extraction

and decision intelligence, such as Data Science. DM for the IoT has been

excessively studied [56–59]. As the volume of data (Big Data) derived

from IoT keeps increasing, the use of DM tools becomes a necessity.

There is a larger volume of data with different structures and format

coming from different vendor devices. As a consequence, data consist not

only of traditional discrete data, but also of streaming data (e.g., about

location, movement, vibration, temperature, humidity, and even chemical

changes in the air) generated from digital sensors in industrial equipment,

automobiles, electrical meters, and shipping crates.

DM tools form a valuable resource of information for different organisations’

and companies’ managers. The effectiveness and efficiency of these DM

tools has a direct impact on the revenue as well as on the short-term and

long-term business activities of a particular company. Nevertheless, the

application of DM tools directly to unstructured data is a very challenging

task. Thus, processing incoming data to reformat their structure according

to specific standards before issuing the DM tools, is required. Data in IoT

can be categorized into several types: RFID data stream, address/unique

identifiers, descriptive data, positional data, environment data and sensor

network data, etc., [60]. This variety of data brings great challenges for

effectively and efficiently managing, analyzing and mining data in the IoT.
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For this reason, different multi-layer data mining models for IoT have

been proposed. For example, in [57] the authors propose a multi-layer

data mining model divided into four layers: (a) data collection layer, (b)

data management layer, (c) event processing layer, and (d) data mining

service layer. However, this framework does not make use of ML in none

of its core basic blocks. In the following subsection (6.1) a typical data

mining process (shown in Figure 13) is briefly explained.

Fig. 13. In this figure a typical data mining process, is shown.

6.1 Typical Data Mining Process

According to [58], a typical DM process includes the following categories

(also shown in Figure 13):

1. Data preparation: Prepare the data for mining, by integrating data

from various data sources, clean the noise from data, and extract some

parts of data into DM system.

2. Data mining: Apply DM algorithms to the data to find the patterns

and evaluate patterns of discovered knowledge.

3. Data presentation: Visualize the data and represent mined knowledge

to the user.
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DM functionalities include classification, clustering, association analysis,

time series analysis, and outlier analysis. Thus, in the following subsections

the different DM functionalities will be explained in a ML-based context.

6.2 Classification

Classification, is the process of finding a set of models or functions that

describe and distinguish data classes or concepts, for the purpose of

predicting the class of objects whose class label is unknown. There are

plenty of ML methods to classify the data, including decision tree induction,

frame-based or rule-based expert systems, hierarchical classification, ANNs,

Bayesian network, and SVMs [58].

6.3 Clustering

Clustering, is the process of analyzing data objects without consulting

a known class model. In other words, clustering algorithms divide data

into meaningful groups so that patterns in the same group are similar

in some sense and patterns in different group are dissimilar in the same

sense. Again, there are plenty of ML methods for clustering data, such as

Hierarchical clustering, Partitioning algorithms (e.g., KNN), and ANN-

based clustering algorithms, such as Kohonen Self-Organizing Maps [58].

6.4 Association Analysis

Association analysis, is the discovery of association rules displaying attribute-

value conditions that frequently occur together in a given set of data. The

association rule mining focuses on the market basket analysis or transaction
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data analysis, and it targets discovery of rules showing attribute-value

associations that occur frequently and also help in the generation of

more general and qualitative knowledge which in turn helps in decision

making [58].

6.5 Time Series Analysis

Time series analysis, comprises methods and techniques for analyzing time

series data in order to extract meaningful statistics and other correlations

or characteristics of the data. A time series is a collection of temporal

data objects; the characteristics of time series data include large data

size, high dimensionality, and updating continuously. ML methods and

more specifically ANN-based techniques (e.g., Recurrent Neural Networks,

Long-Short Term Memory, etc.) are ideal for processing time series data

for prediction or function approximation tasks [58].

6.6 Outlier analysis

Outlier analysis, describes and models regularities or trends for objects

whose behavior changes over time. Outlier detection refers to the problem

of finding samples in a dataset that are very different/dissimilar from all

the other samples contained in the particular dataset based on appropriate

similarity metrics, such as cosine similarity, manhattan distance, Euclidean

distance, etc. Such dissimilar samples often contain useful information

regarding the abnormal behaviour of a system described by the rest of the

data. Again, ML models could be deployed for effectively detecting outliers

in a specified dataset [58]. For example in [61], UL-based Self-organizing
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maps are proposed for addressing the problem of multivariate outlier

detection.

6.7 Data Mining Applications

Data Mining in e-Commerce. Many companies nowadays make use

of DM tools in order to understand any hidden patterns contained in

their past purchase transactions datasets. In this way, new cost-effective

marketing campaigns could be planned and launched. Fortunately, plenty

of data related to e-commerce exist making it an attractive domain for

DM to be applied on. DM in e-commerce is most of the times used for

suggesting to customers products similar (according to a specified notion

of similarity) to those which they have sometime in their life bought. To

accomplish this task, the behaviour of users is monitored and analysed

when surfing in Internet, searching, as well as selecting different products.

Classic recommender systems using collaborative filtering may propose

the most popular items that people/customers, similar to a particular

user (again leveraging different similarity metrics), bought. In this way,

it has been shown experimentally that there was an increment on sales

in contrast with suggestion systems that just consider user’s preferences.

Recommender systems also extends to social network, education area,

academic library, and tourism [58].

Data Mining in Health Care. As already mentioned DM in healthcare

is an increasingly popular field for the last decade. The various and

heterogeneous medical data generated by different healthcare organizations

and centres, including payers, medical equipment providers, goverment,
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pharmaceuttical companies, doctor notes, etc., can be used as datasets for

performing DM on them, predictive modelling, survival analysis, clustering,

classification and a bunch of other analytics tools for improving the quality

of care as well as reduce the cost and wasted resources. Patients’ medical

data can be mined to explore any opportunities for delivering same medical

results (i.e., treatment) but at the same time minimizing the required

resources. Futhermore, applying DM in medical data can detect unusual

patterns and thus potential frauds, as well as detect and understand the

high-cost patients suffering from rare diseases [58].

Data Mining in City Governance. DM can be directly applied in

public service areas to discover any potential public needs, improve services’

performance, and aid decision making systems. Estonia, is popular for its all

e-government based approach where the most government-related processes

are individually performed by citizens through the Internet. E-government

improves quality of government service, cost savings, wider political

participation, and more effective policies and programs. Furthermore,

DM could be employed in order to assess the impact of different natural

disasters on the agricultural production to rank the disaster affected areas

objectively and assist governments in disaster preparation and resource

allocation. Moreover, the factors that lead a resident’s decision to leave

the city can be tracked, using data analytic tools through DM platforms.

Finally, the government could deploy DM techniques to analyze the growing

volume of crime data and detect the highest crime areas so to adapt its

law enforcement methodologies according to the new insights gained [58].
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7 Conclusion

The IoT concept arises from the need to interconnect, manage, and

automate the process of controlling and extracting useful information from

the enormous amounts of interconnected devices. Nevertheless, the full

benefits of this groundbreaking concept cannot be fully realized without

the adoption of ML as the core technology for the devices’ intelligence

and processing capabilities enhancing, as well as empowering DM tools

with increased performance on detecting the underlying insights and

valuable information contained in large volumes of data. Employing ML

models in devices and sensors participating in IoT will unlock the potential

advantages that this novel combination may have.

However, the IoT’s key enabling technologies as well as different

limitations of the devices that may arise (e.g., battery capacity) should

be carefully examined. ML is the key technology that will transform

the classic Internet of Things to an enhanced version called Internet of

Intelligent Things. In this large-scale comprehensive evaluation, we have

explained in detail what exactly IoT is (Section 2) also giving some of

the most prominent key enabling technologies (Section 2.2). Furthermore,

we have explained in-detail why IoT causes the rise of Big Data due the

enormous number of IoT’s participating devices as well as their continuous

operating (and thus, the continuous generation of data), also detecting

the major challenges in IoT’s Big Data era that need to be effectively

tackled (Section 3.2).

Afterwards, we made a deep dive to Machine Learning core aspects

(Section 4), also discussing and explaining how different Machine Learning
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models could be deployed for enhancing the IoT as a concept and transforming

it to IoIT (Section 5). Moreover, Data Mining in IoT has been described

in detail in order to get the insights behind the strong connection of

Machine Learning and Data Mining fields (Section 6). DM and ML are

closely working together when trying to effectively extract and discover

data correlations and features from complex sequential data arising from

the emergence of IoT. ML-based DM in IoT, clearly lead the classic

IoT concept to its enhanced version, namely IoIT. Considering all of

the above, we have shown in detail how Internet of Intelligent Things

(i.e., the enhanced version of IoT) can be fully realized by adopting

Machine Learning technologies. It is worth to be noted, that the full

benefits and potentials can be fully achieved through the effective and

efficient utilization of the new enhanced concept, namely IoIT. Through

IoIT, humanity can achieve goals and objectives, previously seen only as

potential opportunities [62].

In conclusion, this work aims on briefly explaining the different aspects

composing the new, enhanced IoT concept, namely IoIT, also giving the

open challenges related to it. In addition, this large-scale evaluation aims

on providing directions towards the realization of IoIT, also trying to

inspire and motivate researchers to conduct studies in IoIT-related aspects.

Finally, in an attempt to define this interdisciplinary concept, we provide

the following definition for IoIT. Internet of Intelligent Things (IoIT), is

the act of deploying intelligence on an enormous amount of interconnected

devices as well as for extracting useful insights from the Big Data derived

from them.
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