
Convolutional Neural Networks
in Combination with Support Vector
Machines for Complex Sequential

Data Classification

Antreas Dionysiou1, Michalis Agathocleous1, Chris Christodoulou1(B),
and Vasilis Promponas2

1 Department of Computer Science, University of Cyprus,
P.O. Box 20537, 1678 Nicosia, Cyprus

{adiony01,magath06,cchrist}@cs.ucy.ac.cy
2 Department of Biological Sciences, University of Cyprus,

P.O. Box 20537, 1678 Nicosia, Cyprus
vprobon@ucy.ac.cy

Abstract. Trying to extract features from complex sequential data for
classification and prediction problems is an extremely difficult task. Deep
Machine Learning techniques, such as Convolutional Neural Networks
(CNNs), have been exclusively designed to face this class of problems.
Support Vector Machines (SVMs) are a powerful technique for general
classification problems, regression, and outlier detection. In this paper we
present the development and implementation of an innovative by design
combination of CNNs with SVMs as a solution to the Protein Secondary
Structure Prediction problem, with a novel two dimensional (2D) input
representation method, where Multiple Sequence Alignment profile vec-
tors are placed one under another. This 2D input is used to train the
CNNs achieving preliminary results of 80.40% per residue accuracy (Q3),
which are expected to increase with the use of larger training datasets
and more sophisticated ensemble methods.

Keywords: Convolutional Neural Networks
Support Vector Machines · Deep learning · Machine learning
Bioinformatics · Protein Secondary Structure Prediction

1 Introduction

Learning, is a many-faceted phenomenon. The learning process includes the
acquisition of new declarative knowledge, the development of cognitive skills
through instructions and practice, the organizing of new knowledge into gen-
eral, the effective representation of data and finally, the discovery of new the-
ories and facts through practice and experimentation. Analysis of sequential
data, feature extraction and prediction through Machine Learning (ML) algo-
rithms/techniques, has been excessively studied. Nevertheless, the complexity
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 444–455, 2018.
https://doi.org/10.1007/978-3-030-01421-6_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01421-6_43&domain=pdf


CNNs in Combination with SVMs, for Sequential Data Classification 445

and divergence of the big data that exist nowadays keep this field of research
open. When designing ML techniques for complex sequential data prediction, one
must take into account, (a) how to capture both short- and long-range sequence
correlations [1], and (b) how to focus on the most relevant information in large
quantities of data [2].

A Convolutional Neural Network (CNN) is a class of deep, feedforward artifi-
cial neural networks (NN) that has successfully been applied to analyzing visual
imagery [3,4]. CNNs were inspired by the human visual system, where individ-
ual cortical neurons respond to stimuli, only in a restricted region of the visual
field, known as the receptive field. The receptive fields of different neurons par-
tially overlap such that they cover the entire visual field. CNNs have enjoyed
a great success in large-scale image and video recognition [5]. This has become
possible due to the large public image repositories, such as ImageNet [3], and
high-performance computing systems, such as GPUs or large-scale distributed
clusters [6]. Overall, CNNs are in general a good option for feature extraction,
immense complexity sequence and pattern recognition problems [3–10].

Support Vector Machines (SVMs) were introduced by Cortes and Vapnik
[11], initially for binary classification problems. SVMs are a powerful technique
for linearly and non-linearly separable classification problems, regression, and
outlier detection, with an intuitive model representation [11].

A challenging task for ML techniques is to make predictions on sequential
data that encode high complexity of interdependencies and correlations. Applica-
tion examples include problems from Bioinformatics such as Protein Secondary
Structure Prediction (PSSP) [12–15]; even though the three dimensional (3D)
structure of a protein molecule is determined largely by its amino acid sequence,
yet, the understanding of the complex sequence-structure relationship is one of
the greatest challenges in computational biology. A ML model designed for such
data has to be in position to extract relevant features, and at the same time
reveal any long/short range interdependencies in the sequence of data given.
The major key point that needs to be considered when trying to solve the PSSP
problem is the complex sequence correlations and interactions between the amino
acid residues of a protein molecule. In order to maximize the prediction accuracy
of a proposed NN technique for a specific amino acid in a protein molecule, the
adjacent amino acids have to be considered by the proposed NN architecture.

In this paper we present a hybrid machine learning method based on the
application of CNNs in combination with SVMs, for complex sequential data
classification and prediction. The implemented model is then tested on the PSSP
problem for 3-state secondary structure (SS) prediction.

2 Methodology

2.1 The CNN Architecture

CNNs are biologically-inspired variants of Multi-Layer Perceptrons (MLPs). The
CNN architecture consists of an input layer (inactive), multiple hidden layers and
an output layer. Generally speaking, CNNs combine three architectural ideas to



446 A. Dionysiou et al.

ensure some degree of shift, scale, and distortion invariance: local receptive fields,
shared weights, and spatial subsampling/pooling [7]. The hidden layers of a CNN
typically consist of convolutional layers, pooling layers and fully connected lay-
ers. There are four main operations performed by a CNN: (a) convolution, (b)
non linearity (Rectifier Linear Unit - ReLU), (c) pooling or sub sampling, and
(d) classification. One of the major characteristics of CNNs is that they take
advantage of the fact that the input would be like an “image”, so they constrain
the architecture in a more sensible way. Every layer of a CNN transforms one
volume of activations to another through a differential function. The arrange-
ment of a CNN’s neurons, unlike a regular NN, is in 3 dimensions: width, height
and depth. The Convolutional Layer (CL) is the core building block of a CNN
that basically performs the feature extraction process. The key hyperparame-
ter of a CL is the kernel. The kernel is basically a 2D array initialized with
random values, and it is used to compute dot products between the entries of
the filter and the input volume at any position. The stride is another impor-
tant hyperparameter that defines the amount of sliding of the kernel across the
width and height of the input volume. The result of the kernel sliding over the
width and height of the input volume is the feature map, a 2D array holding the
responses/activations of the kernel at any spatial position. Moreover, the CNNs’
ability to handle complex sequential data relies in part to the sparse connections
of neurons. More specifically, each neuron is connected to only a local region
of the input volume (i.e., receptive field), and as a result CNNs are capable of
encoding complex sequential data correlations in their structure. The Pooling
Layer (PL) is another critical block, for building a CNN. Generally speaking, a
common technique for constructing a CNN is to insert a pooling layer in-between
successive CLs. The main purpose of a pooling layer is to (a) reduce the repre-
sentation size, (b) reduce the amount of computation in the NN, and (c) control
overfitting. The PL uses a filter of a certain dimension and resizes the input
given spatially, by striding the filter across the input volume and performing
usually the MAX operation. The last layer of a CNN is usually a fully-connected
Softmax output layer. Nevertheless, this final step can be practically realized
with any suitable classifier. In particular, a small advantage was reported when
the softmax output layer of a CNN was replaced by a linear SVM [16].

In this work, the libraries used for CNN and SVM implementations are
Deeplearning4j (https://deeplearning4j.org) and LibSVM [17] with Scikit-learn
front-end (http://scikit-learn.org), respectively.

2.2 Data Representation

As mentioned above, CNNs are capable of analyzing image-like inputs. The
major obstacle on trying to solve a complex sequential data classification problem
with CNNs is the representation of the data, in such a way that the network is
able not only to understand the shape of the input volume, but also to track
the complex sequence correlations among the input volume. Transforming the
sequential data shape so as to make it look like an “image”, allows CNNs to
capture the complex sequence-structure relationship, including to model the SS

https://deeplearning4j.org
http://scikit-learn.org


CNNs in Combination with SVMs, for Sequential Data Classification 447

interactions among adjacent or distant amino acid residues in the PSSP problem.
Along these lines, we reorganised the input data shape so that the vectors of
each sample in the sequential data are placed one under another, and in such
a way create an “image-like” input that will be effectively read correctly and
understood by the CNN. In particular, for PSSP we have created a new input
volume by placing Multiple Sequence Alignment (MSA) [18] profile vectors of
each amino acid one under another to construct a 2D representation of the MSA
profiles of a certain number of neighbouring amino acid residues (Fig. 1). By
sliding the kernel over the newly constructed input volume, CNNs are able to
perform feature extraction for each record data, but also consider neighboring
correlations and interactions, if any exist. Note that unlike other techniques, the
attention given to any neighboring record correlations is equally weighted across
all the input volume, for each sample given. This lets the CNN discover and
capture any short, mid- and long range correlations among the input records
and consider them all equally in terms of the output volume created. One of the
major contributions of this paper is this innovative input data representation,
especially designed for the complex sequential data of the PSSP problem.

Fig. 1. Example of Data Representation Method: An example of data represen-
tation of an input sample using a window size of 15 amino acids. Each line represents
the MSA profile vector for the specific amino acid. The SS label for the example input
sample showed in this figure, is the SS label for the middle amino acid.

2.3 Application Domain and Data

High quality datasets for training and validation purposes are a prerequisite when
trying to construct useful prediction models [2]. Therefore, we have chosen PSSP
a well known bioinformatics problem, which is characterized by the complexity
of the correlations between the data records due to the existence of combinations
of short, mid and long range interactions.

The PSSP, which is based on the Primary Structure (PS) of a protein
molecule is considered to be an important problem, since the SS can be seen
as a low-resolution snapshot of a protein’s 3D structure, and can thus shed light



448 A. Dionysiou et al.

on its functional properties and assist in many other applications like drug and
enzyme design. As mentioned above, the understanding of the complex sequence-
structure relationship is one of the greatest challenges for the PSSP problem.
Since the currently known experimental methods for determining the 3D struc-
ture of a protein molecule are expensive, time consuming and frequently ineffi-
cient [12], different methods and algorithms for predicting the secondary struc-
ture of a protein molecule have been developed [8,12,14,15,19,20]. In particular,
Recurrent Neural Networks (RNNs) were successful in the PSSP problem [20],
as their architecture may capture both short- and long-range interactions needed
for PSSP. CNNs though can detect and extract high complexity features from
an input sequence and at the same time track any short-, mid- or long-range
interactions depending on the window size. Thus we decided to use CNNs in
combination with our novel data representation method for the PSSP problem.

A protein is typically composed by 20 different amino acid types which are
chemically connected to form a polypeptide chain, folding into a 3D structure by
forming any-range interactions. There are eight main SS states that each amino
acid can be assigned to, when a protein 3D structure is available, which are typ-
ically grouped in three classes, namely: Helix (H), Extended (E) and Coil/Loop
(C/L) with different geometrical and hydrogen-bonding properties. In this work,
we use CB513 [19], a non-redundant dataset which has been heavily used as a
benchmark for the PSSP problem that contains 513 proteins excluding eight pro-
teins with names: 1coiA 1-29, 1mctI 1-28, 1tiiC 195-230, 2erlA 1-40, 1ceoA 202-
254, 1mrtA 31-61, 1wfbB 1-37 and 6rlxC -2-20 due to corrupted MSA profiles.
The use of MSA profiles enhanced the performance of PSSP ML algorithms, since
they incorporate information of homologous sequences, which may facilitate the
detection of subtle, yet important, patterns along the sequences [14]. In partic-
ular, for representing each protein sequence position, we use a 20-dimensional
vector, which corresponds to the frequencies of 20 different amino acid types as
calculated from a PSI-BLAST [21] search against the NCBI-NR (NCBI: https://
www.ncbi.nlm.nih.gov/) database. Note that we have also performed an exper-
iment on a much larger dataset, namely PISCES [22] which shows promising
results.

2.4 Support Vector Machines (SVMs)

The main idea behind SVMs is that the input vectors are non-linearly mapped
to a higher dimensional feature space using an appropriate kernel function with
the hope that a linearly inseparable problem in the input space becomes linearly
separable in the new feature space, i.e., a linear decision surface can constructed
[23]. An important advantage of SVMs is that the search for the decision sur-
face that maximizes the margin among the target class instances ensures high
generalization ability of the learning machine [24]. Their robust performance
with respect to sparse and noisy data makes them a good choice in a num-
ber of applications from text categorization to protein function prediction [25].
Moreover, SVMs were shown to be the best technique for filtering on the PSSP
problem [13]. Given this, we decided to test the filtering capabilities of SVMs

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/


CNNs in Combination with SVMs, for Sequential Data Classification 449

on the CNNs’ SS prediction results, to see whether the accuracy is improved,
and correct the predicted SS of a protein molecule gathered from an ensemble
of CNNs.

3 Results and Discussion

3.1 Optimising the Parameters

The CNN implementation using the innovative input data representation
described in Sect. 2.2 has been used and tested on the PSSP problem. To train
the CNN, we have used the already mentioned CB513 dataset. More specifically,
the model’s input was a combination of a certain number of neighboring amino
acids MSA profile record vectors, one under another, forming a 2D array. The
target output label was the SS class for the middle point amino acid that had
been examined.

A single CNN has been trained each time. We have decided to track the opti-
mal hyperparameter values using a specific fold after dividing CB513 dataset into
ten (10) folds. The main reason for optimizing the hyperparameters on a spe-
cific fold is the small size of CB513 dataset. Accuracy results using different
hyperparameter values on the other folds are not expected to vary considerably.
During this phase, multiple experiments were performed in order to tune up
our model and finally achieve the highest results using the CNN. These were
Q3 of 75.155% and Segment OVerlap (SOV [30]) of 0.713. CNNs with different
numbers of CLs, PLs, kernel sizes, strides, number of parallel filters in each CL,
and Gradient Descent (GD) optimization algorithms (Fig. 2) have been tested
for optimising the parameter values. The optimization algorithms used are: Gra-
dient Descent (GD), Gradient Descent with momentum (GD with momentum),
Adaptive Gradient Algorithm (AdaGrad) [26], RMSprop [27], AdaDelta [28],
Adaptive Moment Estimation (Adam) [29]. The two most critical hyperparam-
eters that showed a big impact on the results are: (a) the optimization method
used and (b) the number of neighboring amino acids to be considered in each
sample (window size). More specifically, the parameter W is the number of total
amino acids to be considered by the CNN when trying to predict the SS of the
floor(W/2) + 1 amino acid. Then, according to the W parameter we reconstruct
the input sample so as to become a 2D array with shape W ×20. The results are
shown in Fig. 3. Unlike Wang’s et al. [8] method, where they use 42 input fea-
tures for each residue in an one dimensional input vector format, we use 20×W
(20 input features for each amino acid × window size) input features for each
residue in a two dimensional input vector format where each line represents the
MSA profile of an amino acid at any specific position. Generally speaking Wang’s
et al. [8] 42 input features used include our 20 input features (MSA profile for
each amino acid) plus extra 22 input features for each amino acid. In this way,
our method reduces the dimensionality of the problem without losing too much
important information. Moving forward, we had to tune up the parameters that
determine the network’s architecture.



450 A. Dionysiou et al.

Fig. 2. Optimizers: CNNs Q3 accuracy results using different Gradient Descent (GD)
optimization algorithms.

Fig. 3. Window Size: CNNs Q3 accuracy results with different window (W) sizes.

To get a general idea about the CNN performance we have trained it using
the CB513 dataset. After tuning up the network architecture, the following opti-
mal CNN parameter values resulted: (a) Number of convolutional layers: 3, (b)
Number of Pooling Layers: 0, (c) Kernel/Filter size: 2 × 2, (d) Stride: 1, (e)
Number of Parallel Filters per Layer: 5, (f) Neurons Activation Function: Leaky
ReLU, and (g) Optimization method: Gradient Descent with momentum = 0.85.



CNNs in Combination with SVMs, for Sequential Data Classification 451

The number of neighboring amino acids (W) that leads to some among the high-
est Q3 results and at the same time limiting the complexity of information been
used (i.e., minimizing the window) was 15. Moreover, no significant change on
Q3 accuracy results was noticed using larger window (W) sizes (Fig. 3). Based
on the results, we realized that (i) smaller W values do not provide enough
information to the network regarding the adjacent interactions between amino
acids, and (ii) larger W values contain way too much (unnecessary in some way)
information for the network to be handled and decoded properly.

We did not use pooling layers for our CNN architecture due to the fact
that subsampling the features gathered from CNN is not relevant in the PSSP
problem. Getting only the maximum value of a spatial domain does not work
in PSSP as every value extracted from CLs may represent interactions of amino
acids in a certain region. These are the most important factors that lead to low
Q3 and SOV results using PLs.

3.2 10-Fold Cross-Validation on CB513

In order to validate the robustness of the model as well as to prove its efficiency
to the exposure of various training and testing data, we had to complete the
evaluation of the PSSP problem on the CB513 dataset, using a 10-fold cross-
validation test. All the experiments made are with the optimal parameters of the
model as described in Sect. 3.1. As shown in Table 1, the Q3 and SOV accuracy
results of CNN with 10-fold cross-validation are 75.15% and 0.713 respectively.

Table 1. Summary of the results for all methods.

Method Q3(%) QH(%) QE(%) QL(%) SOV SOVH SOVE SOVL

CNN 75.155 69.474 67.339 84.566 0.713 0.696 0.669 0.734

CNN Ensembles 78.914 72.748 68.854 85.385 0.744 0.738 0.722 0.737

CNN Ens. + ER Filt. 78.692 70.147 66.921 87.053 0.756 0.669 0.713 0.731

CNN Ens. + SVM Filt. 80.40 80.911 70.578 85.165 0.736 0.724 0.716 0.743

3.3 Ensembles and External Rules Filtering

After tracking the optimal parameters for the CNN, we have performed six (6)
experiments for each fold. Then, in an attempt to maximize the quality of the
results gathered as well as to increase the Q3 and SOV accuracy, we proceeded
with using the winner-take-all ensembles technique [31,32] on every single fold
separately. This technique obtains the predictions of a number of same ML model
experiments, and applies the winner takes all method on each amino acid residue
SS class predicted. The dramatically improved results are shown in Table 1.

Filtering the SS prediction using external empirical rules is usually the last
step made, as a final attempt to improve the quality of the results. This is
accomplished by removing conformations that are physicochemically unlikely to



452 A. Dionysiou et al.

happen [15]. Applying the external rules filtering on the CNN’s SS prediction,
interestingly, does not improve the Q3 score, but it improves the SOV. The
results are shown in Table 1.

3.4 Filtering Using Support Vector Machines (SVMs)

CNNs showed very good results on the PSSP (Figs. 2, 3 and Table 1). Neverthe-
less, as mentioned above, we tried to use SVMs to perform the filtering task.
More specifically, after gathering the predictions from the CNN we have trained
a SVM using a window of SS states predicted by the CNN. After performing
several experiments using different kernels, misclassification penalty parameters
(C) [11], Gamma values (G) [11] and window sizes (WIN), we have decided for
the optimal SVM parameters that lead to the highest Q3 and SOV accuracy on
the PSSP problem and which are: (a) Kernel: Radial Basis Function, (b) C = 1,
(c) G = 0.001 and (d) WIN = 7. The results are shown in Tables 2 and 3.

3.5 Summary of the Results

The results shown in Table 1 summarize the Q3 accuracy and SOV results gath-
ered, with all the methods discussed in this paper, using 10-fold cross-validation.
It is shown that the CNN can achieve relatively high Q3 and SOV results
(75.155% and 0.713 respectively) by its own. Nevertheless, the CNN using ensem-
bles improved the Q3 accuracy results by approximately 3% and SOV score by
0.031. Moving on, filtering the results using External Rules mentioned above,
decreases the overall Q3 accuracy results to 78.692%, but dramatically increases
the SOV score from 0.744 to 0.756. This was expected as filtering with External
Rules has previously been reported to improve SOV scores, but at the same
time decrease the overall Q3 accuracy [12]. Finally, using the combination of
CNN ensembles and SVM as a filtering technique, achieves the highest Q3 accu-
racy results (80.40%). The Q3 values for different folds vary from 78.96% to
83.91% and the SOV from 0.71 to 0.78 (Table 2). This indicates that the results
for different folds are of comparable quality. Moreover, the accuracies for the
three classes, H, E, L, are calculated separately (see QH , QE , QL and SOVH ,
SOVE , SOVL in Table 2) for getting deeper insight on the quality of the classifier,
and mispredictions are quantified in a confusion matrix, graphically represented
in Fig. 4. As we can see from Table 2, Q3 accuracy results gathered using CNN
Ensembles and SVM filtering are just over 80%, which is considered to be a high
enough percentage when it comes to PSSP, and which also makes this combina-
tion of NN techniques a good option when it comes to complex sequential data
classification and prediction problems. Heffernan’s et al. [20] method achieves
84.16% Q3 accuracy using Bidirectional Recurrent Neural Networks without
using a window, but these results are not directly comparable with our results,
as they make use of a much larger dataset that contains 5789 proteins, compared
to CB513 which contains 513 proteins.

As a conclusion to all the results presented in this paper, we can see that the
CNNs can effectively detect and extract features from complex sequential data,



CNNs in Combination with SVMs, for Sequential Data Classification 453

Table 2. CNN Ensembles and SVM Filtering: Q3 and SOV Results for each
Fold.

Fold Q3(%) QH(%) QE(%) QL(%) SOV SOVH SOVE SOVL

0 79.69 79.77 70.05 84.75 0.74 0.73 0.71 0.75

1 79.74 78.69 68.06 86.77 0.73 0.73 0.71 0.74

2 78.96 78.64 68.27 84.94 0.72 0.71 0.71 0.73

3 79.55 79.09 67.89 86.12 0.71 0.72 0.70 0.73

4 79.26 78.55 70.00 84.79 0.73 0.72 0.73 0.72

5 79.70 80.27 70.18 84.31 0.73 0.71 0.72 0.73

6 79.64 79.85 68.87 85.26 0.73 0.73 0.71 0.74

7 83.70 87.68 76.86 83.91 0.76 0.73 0.71 0.77

8 83.91 87.53 76.33 84.62 0.78 0.75 0.74 0.79

9 79.85 79.04 69.27 86.18 0.73 0.71 0.72 0.73

Avg. 80.40 80.91 70.57 85.16 0.736 0.724 0.716 0.743

Table 3. CNN Ensembles and SVM Filtering: Statistical Analysis

Q3 SOV

Sample standard deviation (s) 1.8140 0.0141

Variance (Sample standard) (s2) 3.2906 0.0002

Mean (Average) 80.4 0.736

Standard error of the mean (SEχ̄) 0.5736 0.0044

Fig. 4. Confusion Matrix: Predictions and mispredictions of the secondary structure
classes H, E and C/L after applying ensembles on each fold using CB513 dataset. Q3
accuracy scores are shown for each class.



454 A. Dionysiou et al.

by utilizing our proposed “image” like data representation method used to train
the CNNs for the PSSP problem. This is due to the fact that our CNN archi-
tecture was exclusively designed to face such problems. In addition, SVMs seem
to be a good technique to be used for filtering the CNN output. The combina-
tion though, of these two ML algorithms seem to be a great option for complex
feature extraction and prediction on sequential data, as we take advantage of
the benefits of both techniques. Finally, by observing the results from the con-
fusion matrix of Fig. 4, we can conclude that the combination of CNNs with
SVMs filtering is a robust and high quality methodology and architecture, as
it maximizes the correct predictions for each SS class. Results are expected to
be improved by collecting more experiments for each fold, using larger datasets
(e.g., PISCES) and deploying more sophisticated ensemble techniques.

References

1. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

2. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine
learning. Artif. Intell. 97(1–2), 245–271 (1997)

3. Krizhevsky, A., Sutskever, I., Hinton, G. E.: ImageNet classication with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 25: Proceedings
of the 26th International Conference on Neural Information Processing Systems,
pp. 1097–1105. Curran Associates, Lake Tahoe, Nevada, Red Hook, NY (2012)

4. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification:
a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

5. Srinivas, S., Sarvadevabhatla, R.K., Mopuri, K.R., Prabhu, N., Kruthiventi, S.S.,
Babu, R.V.: A taxonomy of deep convolutional neural nets for computer vision.
Front. Robot. AI 2, 36 (2016)

6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

7. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series.
In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp.
255–258. MIT Press, Cambridge (1998)

8. Wang, S., Peng, J., Ma, J., Xu, J.: Protein secondary structure prediction using
deep convolutional neural fields. Sci. Rep. 6, 18962 (2016)

9. Bluche, T., Ney, H., Kermorvant, C.: Feature extraction with convolutional neural
networks for handwritten word recognition. In: Proceedings of the 12th IEEE Inter-
national Conference on Document Analysis and Recognition, pp. 285–289 (2013)

10. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, Vancouver, BC, Canada, pp. 6645–6649 (2013)

11. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

12. Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Exploiting the past
and the future in protein secondary structure prediction. Bioinformatics 15(11),
937–946 (1999)

http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1409.1556


CNNs in Combination with SVMs, for Sequential Data Classification 455

13. Kountouris, P., Agathocleous, M., Promponas, V.J., Christodoulou, G., Hadji-
costas, S., Vassiliades, V., Christodoulou, C.: A comparative study on filtering
protein secondary structure prediction. IEEE/ACM Trans. Comput. Biol. Bioin-
form. 9(3), 731–739 (2012)

14. Rost, B., Sander, C.: Combining evolutionary information and neural networks
to predict protein secondary structure. Proteins: Struct. Funct. Bioinform. 19(1),
55–72 (1994)

15. Salamov, A.A., Solovyev, V.V.: Prediction of protein secondary structure by com-
bining nearest-neighbor algorithms and multiple sequence alignments. J. Mol. Biol.
247(1), 11–15 (1995)

16. Tang, Y.: Deep learning using linear support vector machines. arXiv preprint
arXiv:1306.0239 (2013)

17. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3), 27 (2011)

18. Wallace, I.M., Blackshields, G., Higgins, D.: Multiple sequence alignment. Curr.
Opin. Struct. Biol. 15(3), 261–266 (2005)

19. Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence meth-
ods for protein secondary structure prediction. Proteins: Struct. Funct. Bioinform.
34(4), 508–519 (1999)

20. Heffernan, R., Yang, Y., Paliwal, K., Zhou, Y.: Capturing non-local interactions
by long short-term memory bidirectional recurrent neural networks for improving
prediction of protein secondary structure, backbone angles, contact numbers and
solvent accessibility. Bioinformatics 33(18), 2842–2849 (2017)

21. Schaffer, A.A., et al.: Nucl. Acids Res. 25, 3389–3402 (1997)
22. Wang, G., Dunbrack Jr., R.L.: PISCES: a protein sequence culling server. Bioin-

formatics 19(12), 1589–1591 (2003)
23. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw.

10(5), 988–999 (1999)
24. Meyer, D., Wien, F.T.: Support vector machines. R News 1(3), 23–26 (2001)
25. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler,

D.: Support vector machine classification and validation of cancer tissue samples
using microarray expression data. Bioinformatics 16(10), 906–914 (2000)

26. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

27. Tieleman, T., Hinton, G.: Lecture 6.5 - RMSProp, Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Netw. Mach. 4(2), 26–31
(2012)

28. Zeiler, M. D.: ADADELTA: An Adaptive Learning Rate Method. arXiv preprint
arXiv:1212.5701 (2012)

29. Kingma, D. P., Ba, J. L.: Adam: a method for stochastic optimization. In: Suthers,
D., Verbert, K., Duval, E., Ochoa, X. (Eds.) Proceedings of the 3rd International
Conference on Learning Representations (ICLR 2015), Leuven, Belgium, pp. 1–13.
ACM, New York, NY, USA (2015)

30. Rost, B., Sander, C., Schneider, R.: Redefining the goals of protein secondary
structure prediction. J. Mol. Biol. 235(1), 13–26 (1994)

31. Granitto, P.M., Verdes, P.F., Ceccatto, H.A.: Neural network ensembles: evaluation
of aggregation algorithms. Artif. Intell. 163(2), 139–162 (2005)

32. Fukai, T., Tanaka, S.: A simple neural network exhibiting selective activation of
neuronal ensembles: from winner-take-all to winners-share-all. Neural Comput.
9(1), 77–97 (1997)

http://arxiv.org/abs/1306.0239
http://arxiv.org/abs/1212.5701

	Convolutional Neural Networks in Combination with Support Vector Machines for Complex Sequential Data Classification
	1 Introduction
	2 Methodology
	2.1 The CNN Architecture
	2.2 Data Representation
	2.3 Application Domain and Data
	2.4 Support Vector Machines (SVMs)

	3 Results and Discussion
	3.1 Optimising the Parameters
	3.2 10-Fold Cross-Validation on CB513
	3.3 Ensembles and External Rules Filtering
	3.4 Filtering Using Support Vector Machines (SVMs)
	3.5 Summary of the Results

	References


