
Unicode Evil: Evading NLP Systems Using Visual Similarities of
Text Characters

Antreas Dionysiou
University of Cyprus

Nicosia, Cyprus
adiony01@cs.ucy.ac.cy

Elias Athanasopoulos
University of Cyprus

Nicosia, Cyprus
eliasathan@cs.ucy.ac.cy

ABSTRACT
Adversarial Text Generation Frameworks (ATGFs) aim at causing
a Natural Language Processing (NLP) machine to misbehave, i.e.,
misclassify a given input. In this paper, we propose EvilText, a
general ATGF that successfully evades some of the most popular
NLP machines by (efficiently) perturbing a given legitimate text,
preserving at the same time the original text’s semantics as well
as human readability. Perturbations are based on visually similar
classes of characters appearing in the unicode set. EvilText can
be utilized from NLP services’ operators for evaluating their sys-
tems security and robustness. Furthermore, EvilText outperforms
the state-of-the-art ATGFs, in terms of: (a) effectiveness, (b) efficiency
and (c) original text’s semantics and human readability preservation.
We evaluate EvilText on some of the most popular NLP systems
used for sentiment analysis and toxic content detection. We further
expand on the generality and transferability of our ATGF, while
also exploring possible countermeasures for defending against our
attacks. Surprisingly, naive defence mechanisms fail to mitigate our
attacks; the only promising one being the restriction of unicode
characters use. However, we argue that restricting the use of uni-
code characters imposes a significant trade-off between security
and usability as almost all websites are heavily based on unicode
support.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning;

KEYWORDS
adversarial machine learning; adversarial text generation; natural
language processing

ACM Reference Format:
Antreas Dionysiou and Elias Athanasopoulos. 2021. Unicode Evil: Evading
NLP Systems Using Visual Similarities of Text Characters. In Proceedings
of the 14th ACM Workshop on Artificial Intelligence and Security (AISec ’21),
November 15, 2021, Virtual Event, Republic of Korea. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3474369.3486871

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AISec ’21, November 15, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8657-9/21/11. . . $15.00
https://doi.org/10.1145/3474369.3486871

1 INTRODUCTION
A large number of Internet services and applications are heavily
based on Natural Language Processing (NLP) techniques for pro-
cessing, interpretation and manipulation of text. The advances of
Deep Learning (DL) based NLP technologies have led to a broad
deployment of such systems on important real-world problems.
These DL-based NLP systems are often used for text classification
problems, such as sentiment analysis and toxic content detection,
demonstrating high accuracy rates. Nonetheless, these models have
been shown to be vulnerable against sophisticated adversarial sam-
ples that are generated through the perturbation1 of legitimate ones
[16, 30, 31].

The nature of input data, which lacks of stationary distribution,
makes Machine Learning (ML) algorithms vulnerable to different
types of attacks, such as (a) poisoning the training data, e.g., craft-
ing malicious input data that, when retrained on, causes the learner
to learn an incorrect decision-making function, and (b) misleading
the learner’s classifications, essentially in a highly targeted manner,
e.g., perturb a toxic comment that will be classified by the learner as
non-toxic or the opposite. As a result, a new research topic came up,
namely adversarial ML, which is mainly concerned about the design
of ML algorithms that can resist these sophisticated attacks, as well
as the study of the attackers’ capabilities and limitations [5, 22, 44].
In this paper, we focus on (b); we carefully examine the potentials
and capabilities of the attackers on misleading the learner’s clas-
sification decisions through the perturbation of legitimate input
samples [16, 30, 31].

Adversarial text generation, i.e., the generation of malicious text
samples by perturbing legitimate ones, is a challenging task com-
pared, for instance, to adversarial image generation, mainly because
of the text’s discrete nature, which makes attacks’ optimization
rather difficult [30, 31]. Additionally, text’s semantics are fairly sen-
sitive to deliberate perturbations/modifications [30]. Adversarial
Text Generation Frameworks (ATGFs) have a wide-range of applica-
tions, and most notably in systems that need to filter-out malicious
text, e.g., social media platforms and movies/TV shows review-
ing sites. Many previous works focus solely on the image domain
[2, 49], where it is relatively easier to construct malicious input
samples which are virtually imperceptible to human perception
[30]. In contrast, even small perturbations to text samples will be
clearly perceptible to human eye although they may affect the clas-
sification outcome of a DL-based NLP system. In general, the image
related known attacks cannot be directly utilized for the adversarial

1By saying perturbation we mean the transformation of a legitimate text to a malicious
one by replacing specific words or characters. For example, transforming the word
“bad” to “bâd” converts the sentiment detected by Google NLP platform from negative
to positive.

Session 1: Adversarial Machine Learning AISec ’21, November 15, 2021, Virtual Event, Republic of Korea

1

https://doi.org/10.1145/3474369.3486871
https://doi.org/10.1145/3474369.3486871

text generation field. Thus, new attack/perturbation techniques
(and the corresponding defences) are required, for causing NLP
systems to misclassify a given input sample, being at the same time
painless for humans to classify the same sample correctly [30].

Due to the increasing interest on adversarial text generation
topic, some recent proposals came out suggesting numerous ways
of generating adversarial text samples through the perturbation of
legitimate ones [16, 30, 31, 43]. Nonetheless, all the aforementioned
studies are conducted under specific settings and assumptions af-
fecting either their generality and applicability or their effectiveness
and efficiency. Thus, the performance, in terms of effectiveness,
efficiency and practicality, of popular ATGFs has to be carefully
assessed. Some examples of assumptions and limitations affecting
some of the most popular ATGFs are shown in Table 1.

In this paper, we propose EvilText2, a black-box based ATGF
specifically designed to effectively and efficiently perturb a given
legitimate text for causing popular NLP models to misbehave, pre-
serving at the same time the original meaning for human readers.
EvilText perturbs text by leveraging visual similarities of characters
included in the unicode set. In particular, EvilText offers a series
of perturbation tactics for crafting malicious text samples by re-
placing the legitimate text’s characters with other, visually similar
ones, from the unicode set. EvilText can be utilized from different,
DL-based or not, NLP services’ administrators for evaluating their
system’s security and robustness. Hence, EvilText is not just an-
other ATGF, rather than also an effective evaluation methodology
for the actual security of current NLP systems. Although differ-
ent perturbation tactics, each one having different performance,
exist; EvilText offers attacking methodologies that achieve high
attack success rates, while also preserving at the most the human
readability factor. Thus, this paper also makes a contribution by
exploring a specific range of all the possible attacks spectrum of
adversarial text generation techniques. This will help the scientific
community to develop generally applicable defences as the current
defence strategies cannot be trivially deployed while also imposing
significant trade-offs.

Our attacks are black-box based, i.e., agnostic about the target
model’s internals, thus, minimizing the adversarial assumptions
compared to the white-box setting [16]. In addition, we demon-
strate the transferability, i.e., general applicability, of our attacks
by evaluating EvilText’s performance on some of the most popular
black-box and white-box NLP machines (we choose NLP machines
that cause other state-of-the-art ATGFs to achieve the lowest at-
tack success rates on average), outperforming, in almost all cases,
the state-of-the-art ATGFs. Note that we treat both white-box and
black-box target NLP machines in a black-box manner, being able
to only query each target NLP model and receive its prediction as
a response. In particular, EvilText manages to evade NLP systems
without even requiring either the numerical confidence score or the
output label from the target model, in contrast to other approaches
found in the literature, e.g., [16, 30]. Furthermore, we are the first
to report attack success rates on both: (a) negative sentiment/toxic
sample to positive sentiment/non-toxic sample, and (b) positive
sentiment/non-toxic sample to negative sentiment/toxic sample,
types of attack, in contrast to all other approaches that either focus

2EvilText is freely available on Bitbucket (https://bitbucket.org/srecgrp/eviltext/).

solely on the (a) type of attack [16, 17, 30] or alter the original text’s
semantics [31]. Moreover, we are the first, at least to our knowledge,
to report results on the MR_v2.0 dataset [33].

Finally, we explore potential defence strategies and explain the
reason why naive defences, such as spell checking and adversarial
training, are not effective for mitigating our attacks. In fact, we
suggest that one practical countermeasure for defending against
EvilText is the restriction of unicode characters use. However, this
is a highly unrealistic scenario as almost all of the websites are
heavily based on unicode support, i.e., a trade-off between security
and usability exists.

Our contributions can be summarized as follows.

• We deliver a new unicode map containing the visually similar
to English alphabet letters unicode characters. Our unicode
map is of larger length compared to other similar maps, e.g.,
[15], and thus, of higher utility, meaning that it offers more
perturbation options for each letter.

• We propose EvilText, an ATGF that is able to conduct suc-
cessful and easy to implement attacks, using the adversarial
text produced by perturbing the legitimate text, while pre-
serving at the same time the text’s original semantics and
human readability. For instance, EvilText achieves 100% at-
tack success rate on MR_v1.0, MR_v2.0 and IMDB datasets
when targeting the Logistic Regression (LR) model. More-
over, EvilText can be utilized from different NLP services’
operators for evaluating their system’s security and robust-
ness. Finally, EvilText can be extended to include other TPTs
that might evade specific target NLP machines.

• We evaluate EvilText on some of themost popularMLmodels
and real-world online NLP applications, including sentiment
analysis and toxic content detection, outperforming the state-
of-the-art ATGFs in almost all cases, while also being the first,
at least to our knowledge, to report results on the MR_v2.0
dataset [33].

• We, for the first time, demonstrate that the positive sentiment/non-
toxic sample to negative sentiment/toxic sample type of at-
tack is more difficult to be performed than the opposite one.

• We conduct a user study on our generated adversarial texts
showing that EvilText has little impact on human under-
standing and original text’s semantics.

• We explore potential defence strategies for mitigating our
attacks. Our results suggest that naive defences, such as
spell checking and adversarial training, cannot resist against
our attacks. In fact, one practical countermeasure might be
the restriction of unicode characters use which, however,
imposes a trade-off between security and usability as almost
all of the websites are heavily based on unicode support.

2 EVILTEXT
As shown in Figure 1, our framework is built upon the following 4
components: (a) the positive/negative opinion words lists, (b) the
perturbation/attack tactics, (c) the unicode map containing visu-
ally similar to English alphabet letters unicode characters, and (d)
the similar positive/negative opinion words dictionary. EvilText’s
attack pipeline is straightforward. First, it receives as input, the
legitimate text along with the attack/perturbation method selected

Session 1: Adversarial Machine Learning AISec ’21, November 15, 2021, Virtual Event, Republic of Korea

2

https://bitbucket.org/srecgrp/eviltext/

Table 1: An overview of the settings and assumptions affecting the effectiveness/efficiency or the generality/applicability of
popular ATGFs found in the related literature.

Assumptions/Limitations Reference
papers

Effectiveness
/Efficiency

Generality
/Applicability

1. White-box (and thus not realistic) attacks only [7, 18, 37, 45] •

2. Attacks oriented only a small group of NLP machines [16] •

3. Negative sentiment/toxic sample to positive sentiment/non-toxic sample attack but not the opposite [16, 17, 30, 31] •

4. Negative impact on the original text’s semantics [31] •

5. Not as effective/efficient as our framework in black-box attack setting [30] •

6. Attacks requiring heavy manual intervention [3, 27] • •

7. Attacks requiring the target model’s confidence score or its output label [16, 17, 30, 31] • •

Figure 1: EvilText consists of 4 components: (a) the posi-
tive/negative opinion words list (drawn from [21]), (b) the
perturbation/attack tactics, (c) the unicode map, and (d) the
similar positive/negative opinionwords dictionary. EvilText
takes as input legitimate text along with the selected attack
tactic and responds with the adversarial text.

and, second, it responds with the perturbed/adversarial text. After
that, the attacker submits the adversarial text to the target NLP
machine. The simplistic design as well as the standalone nature of
EvilText framework facilitates its use across a wide-range of dif-
ferent NLP applications and further strengthens the transferability
property of our attacks. Thus, the different NLP services’ operators
are able to evaluate their systems’ security and robustness without
significant effort. Note that we explore various Text Perturbation
Tactics (TPTs) from naive to more intelligent ones (see Section 3).

Unicode Map Construction. Our attacks are heavily based
on replacing the existing alphabet characters, contained in the
given input text, with other visually similar ones from the unicode
space. Thus, we came up constructing a unicode map containing
the visually similar unicode characters for each English alphabet
letter (26 in total). In order to construct our unicode map, which
will be used for crafting the adversarial texts by perturbing the
given/legitimate ones, we utilize two DL techniques, namely: (a)
Convolutional Neural Networks (CNNs) [28], and (b) Autoencoders
[42]. Although there are other possible options for constructing
this map we choose to use ML-based techniques because they fall
into our field of expertise while also achieving state-of-the-art per-
formance on image classification/recognition tasks [11, 12, 26]. The
final unicode map is the result of taking the union of the two maps
derived from the two aforementioned DL techniques. Using both
CNNs and Autoencoders, for finding visually similar characters

from the unicode space, will result in a unicode map of higher qual-
ity, compared to the one created using one technique only. This
is because CNNs and Autoencoders may detect different unicode
characters as similar to specific alphabet letters. Thus, using both
ANNs helps us to decide about the most visually similar ones by
utilizing the confidence score of each classification. In addition, this
hybrid DL-based method used for grouping unicode’s visually simi-
lar characters, can also be easily extended to other visual similarity
classification tasks. A snippet of the final unicode map is shown in
Figure 2. Note that during the adversarial text generation process,
each unicode character contained in the final unicode map will be
chosen randomly, i.e., using a uniform distribution probability.

For the CNN we use the well-known Lenet-5 architecture [29]
trained on the EMNIST-letters dataset [9] which contains 145, 600
handwritten characters in a total of 26 balanced classes. After train-
ing our CNN classifier and achieving 99.20% testing accuracy, we
have provided as input the image representations of all unicode
characters. Next, we have created a list containing the most (visu-
ally) similar characters found in the unicode space, for each English
alphabet letter, in decreasing order of similarity (according to CNN’s
confidence score). Note that we set a threshold to the classifier’s
confidence (≥ 0.95) for including only unicode characters with
significant visual similarity. Our convolutional Autoencoder [19] is
composed of two sub-networks, the encoder and the decoder. The
encoder sub-network compresses the input image sample (matches
the EMNIST-letters dataset format) to a 32-dimensional (32D) vec-
tor, i.e., the code, and the decoder sub-network reconstructs the
initial input image sample from the 32D vector created by the en-
coder sub-network, with the minimum possible reconstruction loss.
We detect the most similar unicode characters by calculating the
Euclidean distances between the reduced encoding of the given
input and all the other learned encodings, sorting them in increas-
ing order. Similar to our CNN classifier, we set a threshold to the
calculated Euclidean distances (≤ 0.1) for selecting only unicode
characters with significant visual similarity.

Our unicode map is more practical compared to other similarity
maps, such as [15], as it creates 26 clusters (one for each English
alphabet letter) grouping all unicode characters (capitals or lower-
case) into the closest cluster. This results to a list of larger length and
thus of higher utility 3, compared to [15]. According to [15], their
image-processing based method (which matches similar characters
based only on specific points on the characters’ contour) does not
perform well when certain amount of shift of the glyph contour

3By saying utility we mean the number of possible options for replacing one character
with another, which is, however, visually similar.

Session 1: Adversarial Machine Learning AISec ’21, November 15, 2021, Virtual Event, Republic of Korea

3

e[��Y�Y�Y�Y%Y�Y�Y$Y"
h[��Y�Y�Y�Y�Y�YYYæYú
i[�+Y,Y*Y-Y�Y?Y�Y¬Y©
3: D,d,þY°Y1Y_Y^Y0Yý
k[��Y�Y9Y�Y2Y6Y3Y7Y8
5: F,0Y�YdY_Y"Y�YmY0

Figure 2: A snippet of theunicodemapwith the visually sim-
ilar unicode characters. Note that some characters look iden-
tical, but they are essentially different in the unicode space.

exists. Therefore, we instead deploy DL-based techniques, i.e., CNNs
and Autoencoders, as they are specifically designed to ensure some
degree of shift, scale, and distortion invariance [28].

Positive/Negative OpinionWords Lists. Performing targeted
perturbation of specific positive/negative sentiment or toxic/non-
toxic words can substantially improve the performance of any pro-
posed ATGF, in terms of effectiveness, i.e., higher attack success
rates, efficiency, i.e., faster adversarial text generation process, and
original text’s semantics preservation. Thus, we utilize the two lists
of positive and negative opinion words derived from [21], where the
authors study the problem of generating feature-based summaries
of customer reviews of products sold online. In the majority of our
proposed TPTs, we deliberately perturb the words contained in
the intersection of the given legitimate text, i.e., the text to be per-
turbed, and the two positive/negative sentiment words lists drawn
from [21]. As a result, our attacks minimize the computational
cost required for crafting adversarial texts by performing targeted
perturbations of the most sentiment/toxicity defining words.

Similar Opinion Words Dictionary. Some positive or nega-
tive sentiment words are of small length. This fact drastically limits
the number of possible perturbation combinations that could be
performed benefiting the NLP systems at detecting the actual senti-
ment/toxicity of a given text. In order to tackle this problem, we
have created a list with the similarity scores of positive and neg-
ative sentiment words, utilizing the Global Vectors for Word Rep-
resentation (GloVe) [40] model, for replacing small length words
with semantically similar and larger ones. In particular, we use
GloVe’s 50-dimensional (50D) pre-trained word vectors derived
from Wikipedia 2014 and Gigaword 5. After collecting and storing
the 50D vector for each positive and negative sentiment word found
in the two words lists derived from [21], we calculate the Euclidean
distances between them in order to conclude about the most similar
ones and thus create the similar positive/negative opinion words
dictionary. Finally, for successfully conducting the third attack, i.e.,
TPT 3 described in Section 3, small length positive/negative senti-
ment and toxic/non-toxic words will be replaced with other words
of similar sentiment or toxicity and of larger length, from the similar
positive/negative opinion words dictionary. We set a threshold for
selecting the top-5 similar words, i.e., the 5 words having the mini-
mum Euclidean distance with the small length to-be-replaced word,
so that the replaceable words are guaranteed to be semantically
similar to the original ones.

3 ATTACKS
Attacks’ Design.A large number of possible TPTs exists. However,
in this paper, we focus on a subset of all possible TPTs and especially

the ones that minimize the impact on the semantics or the original
meaning of the initial input text. DL-based NLP machines have
a pre-defined unknown word vector for out-of-vocabulary (OOV)
words. Thus, we deliberately target specific words that demonstrate
sentiment or toxicity in order for those words to be mapped to the
unknown word vector. Our results suggest that this strategy causes
all tested DL-based NLP machines to misbehave, when trying to
classify the given text’s sentiment or toxicity. Furthermore, our
attacks are partly inspired from the fact that randomly changing
words would not fool classifiers. Thus, choosing important words
to modify is necessary for successful attacks [30]. We propose both
undirected and directed TPTs in the sense that we either perturb the
whole input text given (undirected) or specific words that largely
affect the target NLP model’s classification outcome (directed).

Threat Model. The attacker’s goal is to cause the target ML
model to perform a misclassification by perturbing the initial text,
without, however, changing its original semantics for human read-
ers. An attacker can do so, either using attacks in white-box or
black-box setting.

White-box attack setting assumes that the user can infer the inner
structure, e.g., the gradients, of a particular ML model, and thus
has a complete knowledge of the target model.

Black-box attack setting assumes that the user is not aware of
the model’s architecture, parameters, or training data, being only
capable of querying the target model and receiving its predic-
tions/confidence scores for each class as a response. Furthermore,
the fact that such platforms allow for a limited number of free
requests has to be taken into explicit consideration by potential
attackers that want to perform practical attacks [30].

In this paper, we focus solely on conducing attacks in the black-
box setting due to its inherent practicality. In other words, we treat
even white-box models, for which we know their internal structure,
in a black-box manner, i.e., we can only query them and receive
their confidence score vector as a response. Conducting such attacks
in black-box setting is arguably the most common case as in most
real-world scenarios a user cannot examine or retrieve/download
the inner structure of a target ML model [16].

Text Perturbation Tactics (TPTs). After experimenting with
various NLP machines and considering different ways of modifying
a given input text, but at the same time preserve its originalmeaning,
we came up with a list of possible TPTs. However, EvilText allows
any potential attacker to extend those TPTs and include new ones
that specifically affect certain NLP systems. In fact, this is the main
reason why we choose not to combine our TPTs into a single TPT as
different NLP machines are affected by different TPTs. As a result,
adversaries can utilize a single or a combination of TPTs that best
fit their needs, i.e., they achieve the highest evasion success rates
when targeting specific NLP services.

Similar to [30], we offer TPTs targeting specific sentiment/toxicity
defining words. However, in [30]’s case, for determining those
words, the authors iteratively query the target model by excluding
one word at a time, which decreases their attacks’ efficiency. In
contrast, we directly perturb the words included in the intersec-
tion of the given text and the positive/negative opinion words lists
derived from [21]. As a result, EvilText is substantially more effi-
cient compared to TextBugger as it eliminates the computation (and
communication) overhead required for determining those (already

Session 1: Adversarial Machine Learning AISec ’21, November 15, 2021, Virtual Event, Republic of Korea

4

Figure 3: EvilText pipeline: the attacker (1) feeds the target NLP machine with the legitimate text and receives back a report,
(2) gives as input the legitimate text along with the selected attacking method and EvilText responds with the adversarial text,
and (3) feeds the adversarial text to the target NLP machine and the machine responds with a false report. This 3-step process
is applied for evading both sentiment analysis and toxic content detection machines.

detected and recorded by the literature) words. In addition, our
unicode map is of larger length compared to other similar maps,
e.g., [15], thus, offering a wider-range of choices for characters’
perturbation. A complete list containing examples for all EvilText’s
TPTs is shown in Table 2.

Table 2: Examples for all adversarial TPTs.

Original Text:
————————————–

TPT 1 (The Naive Attacking Method)
————————————–

TPT 2 (Targeted Perturbation of Negative/Positive Sentiment Words)
————————————–

TPT 3 (Replacing Small Length Negative/Positive Sentiment Words)
————————————–

TPT 4 (Doubling Negative/Positive Sentiment Words)
————————————–

TPT 5 (Doubling Negative/Positive Sentiment Words and Perturb)
————————————–

TPT 6 (Insert Spaces Between Negative/Positive
Sentiment Words’ Letters)

————————————–

TPT 7 (Insert Spaces Between Negative/Positive
Sentiment Words’ Letters and Perturb)

————————————–

TPT 1: The Naive Attacking Method. The naive attacking method
replaces all English alphabet letters found in the given legitimate
text with visually similar characters derived from the unicode map.
If a non English alphabet character is found, it is kept the same in
the new perturbed text. As a result, the new perturbed text is of the
same length as the original one.

TPT 2: Targeted Perturbation of Negative/Positive Sentiment Words.
This TPT only perturbs the negative/positive sentiment words con-
tained in the intersection of the given legitimate text and the two
negative/positive sentiment words lists derived from [21], using
our unicode map (Section 2).

TPT 3: Replacing Small Length Negative/Positive Sentiment Words.
After constructing the two lists containing the top-5 similar posi-
tive/negative sentiment words for each word found in both posi-
tive/negative sentiment words lists derived from [21], we replace
each occurrence of positive/negative sentiment word found in the
given input text with a randomly chosen, and of bigger length word
from the top-5 similar positive/negative sentiment word lists. Next,
we perturb the new words, which are however semantically similar
to the previous ones, using our unicode map.

TPT 4: Doubling Negative/Positive Sentiment Words. This TPT dou-
bles the negative/positive sentiment words found in both the given
input text and the negative/positive sentiment words lists derived
from [21]. In particular, for each negative/positive sentiment word
found, we copy the same word and output it twice, one next to
the other. For example, if the word “bad” is found, we output the
transformed word “badbad” in the same position that the previous
word existed.

TPT 5: Doubling Negative/Positive Sentiment Words and Perturb.
For this TPT we perform the same procedure as the previous one,
i.e., TPT 4, but we also perturb the transformed word utilizing
the unicode map. Each letter of the two (same) words is randomly
perturbed, i.e., for each letter a visually similar unicode character
is randomly chosen from the unicode map.

TPT 6: Insert Spaces Between Negative/Positive Sentiment Words’
Letters. This TPT inserts spaces between each character of the neg-
ative/positive sentiment words found in both the given input text
and the negative/positive sentiment words lists derived from [21].
For example, if the word “bad” is found, we output the transformed
word “b a d” in the same position that the previous one existed.

TPT 7: Insert Spaces Between Negative/Positive Sentiment Words’
Letters and Perturb. For this TPT we perform the same procedure as
the previous one, i.e., TPT 6, but we also perturb the transformed
word, i.e., the negative/positive sentiment word with spaces be-
tween each character, utilizing the unicode map.

4 EVILTEXT EVALUATION
We evaluate our attacks on a number of different black-box/white-
box sentiment analysis as well as toxic content detection NLP ma-
chines. Furthermore, in order to have a direct comparison with the
state-of-the-art ATGFs [16, 17, 30], we choose to evaluate our at-
tacks on a subset of the machines tested in the aforementioned stud-
ies. In order to avoid any bias regarding the experimental datasets
as well as to demonstrate the general applicability/transferability
of our framework, we evaluate EvilText on two different NLP prob-
lems, namely: (a) sentiment analysis and (b) toxic content detection.

Session 1: Adversarial Machine Learning AISec ’21, November 15, 2021, Virtual Event, Republic of Korea

5

The two attack pipelines are shown in Figure 3. Our evaluation
setup follows that of prior work in the field such as [16, 17, 30]. We
do not provide the average time needed for generating adversarial
samples for each dataset since EvilText requires 1 pass of the legiti-
mate text to complete the attack process (no iterative optimization
is involved). For instance, EvilText perturbs the whole MR_v1.0
dataset in just 2.06 seconds on a 4-core Xeon machine. Thus, we
avoid providing a detailed analysis and comparison of EvilText’s
efficiency with other state-of-the-art ATGFs since our framework is
faster due to its standalone nature 4. Instead, in this section, we fo-
cus on the effectiveness, i.e., success rates of evading NLP systems,
and semantics preserving aspects.

Sentiment Analysis. Sentiment analysis refers to the use of
NLP techniques, such as statistics and/or ML methods, to extract,
identify, or characterize the sentiment of a text unit [30]. Senti-
ment analysis has been successfully applied to a wide-range of
applications, such as opinion mining [35], especially for improving
businesses’ communications with their clients. We evaluate Evil-
Text’s performance on a number of popular DL-based black-box, i.e.,
online NLP plaforms, and white-box sentiment analysis machines.
In order to have a direct comparison with state-of-the-art ATGFs
we choose to evaluate our attacks on a subset of the sentiment
machines used in [16, 17, 30].

In total, we target 3 white-box sentiment analysis machines,
namely LR, Kim’s CNN [25] and the Long Short-term Memory
(LSTM) (used in [47]). The classifiers’ hyper-parameters are fine-
tuned according to the sensitivity analysis on model performance
conducted by Zhang et al. [48] (as done in [30]). Furthermore, we
use the same hold-out test strategy, i.e., 80%, 10% and 10% of the data
was used for training, validation and testing, respectively, while
also tuning the hyper-parameters only on the validation set, exactly
as done in TextBugger [30].

In addition, we target 3 black-box sentiment analysis machines,
namely FastText, TextProcessing and Aylien. However, we focus
on collecting the results from FastText machine as it has been
experimentally shown that FastText performs best, i.e., it is the
most robust classifier allowing the lowest attack success rates on
average, compared to the other black-box NLP machines [30] 5.
One potential explanation about FastText’s robustness against such
attacks is its subword based embedding nature (used from state-
of-the-art NLP models) [13]. The FastText model is trained on the
Amazon Review Polarity [24] dataset and we do not have any
information about the model’s parameters or architecture.

Datasets.We evaluate EvilText’s performance on the following 3
benchmark datasets for sentiment analysis.

• IMDB [32]: This dataset contains 50,000 positive and nega-
tive movie reviews crawled from online sources, having an
average length of 216 words per sample. It has been divided
into two parts, i.e., 25,000 reviews for training and 25,000
reviews for testing.

• Rotten Tomatoes Movie Reviews Version 1 (MR_v1.0)
[34]: This dataset is a collection of movie reviews collected
by Pang and Lee [34]. It contains 5,331 positive and 5,331

4For instance, some preliminary results showed that EvilText is ≈ 10× more efficient
compared to TextBugger [30], when tested on MR_v1.0 dataset.
5Our evaluation results suggest the same.

Table 3: The sentiment analysis target models’ testing accu-
racies used in TextBugger and EvilText ATGFs.

Model Dataset TextBugger [30] EvilText

LR
MRv1 73.70% 75.43%
MRv2 – 79.32%
IMDB 82.1% 88.04%

CNN
MRv1 78.10% 80.64%
MRv2 – 78.15%
IMDB 89.4% 89.9%

LSTM
MRv1 80.10% 84.41%
MRv2 – 86.50%
IMDB 90.70% 93.20%

negative processed sentences/snippets, having an average
length of 32 words per sample.

• Rotten Tomatoes Movie Reviews Version 2 (MR_v2.0)
[33]:This dataset represents an enhancement of theMR_v1.0
dataset. It contains 1,000 positive and 1,000 negative pro-
cessed reviews with multiple lines and average length of 706
words per sample. We are the first to report results on this
dataset, at least to our knowledge.

Attacks’ Effectiveness and Efficiency. The testing accuracies for the
3 white-box sentiment analysis machines used, i.e., LR, CNN and
LSTM, are shown in Table 3. As shown, EvilText targets sentiment
analysis machines with higher performance compared to state-
of-the-art ATGF, namely TextBugger [30]. This means that our
white-box machines are essentially better at detecting the actual
sentiment contained in a given text, compared to [30]. This fact
makes it harder for our ATGF to evade the tested, DL-based or not,
sentiment analysis machines. However, our results indicate that all
the TPTs proposed, as part of EvilText ATGF, successfully evade
some of the most popular NLP sentiment analysis machines.

Table 4 shows the attack success rates for negative and positive
reviews, on the IMDB, MR_v1.0 and MR_v2.0 datasets, for all TPTs.
As shown, the LR classifier is more susceptible to negative adver-
sarial texts compared to the other two DL-based NLP models, i.e.,
CNN and LSTM. However, the LR classifier is extremely robust on
classifying positive sentiment adversarial reviews as we manage
to achieve no more than 25.05% attack success rate, whereas for
the other two DL-based NLP models we achieve 56.04% and 88.94%
attack success rates, respectively. Actually, it is rather interesting
that the LSTM model, which achieves higher testing accuracy com-
pared to LR and CNN (see Table 3), performs worse on classifying
positive sentiment adversarial reviews.

In Figure 4, we compare EvilText’s performance on evading
white-box and black-box NLP sentiment analysis machines, against
state-of-the-art ATGFs. Note that we report attack success rates on
both negative and positive reviews in contrast to state-of-the-art
ATGFs which focus solely on attacking negative reviews. As shown
in Figures 4(a)-4(c), our TPTs outperform, in almost all cases, the
state-of-the-art white-box ATGFs. The only case where TextBugger
[30] achieves better attack success rates, is on the IMDB dataset
tested on the white-box CNN machine having, however, little im-
provement, i.e., only 0.88%, compared to our ATGF. Moreover, this
result can be explained by the fact that our white-box classifiers are
more robust on detecting the actual sentiment contained in a given

Session 1: Adversarial Machine Learning AISec ’21, November 15, 2021, Virtual Event, Republic of Korea

6

Table 4: The attack success rates for eachTPTon the negative (upper row) and positive (lower row) sentiment reviews contained
in each dataset, for all white-box sentiment analysis machines.

Model Dataset TPT 1 TPT 2 TPT 3 TPT 4 TPT 5 TPT 6 TPT 7

LR

MR_v1.0 100% 86.73% 86.73% 86.73% 86.73% 86.56% 86.56%
0% 5.87% 5.87% 5.87% 5.87% 6.04% 6.04%

MR_v2.0 100% 74.60% 74.60% 74.60% 74.60% 74.70% 74.70%
0% 9.5% 9.5% 9.5% 9.5% 9.6% 9.6%

IMDB 100% 38.63% 38.64% 38.64% 38.64% 38.52% 38.52%
0% 24.96% 24.96% 24.96% 24.96% 25.05% 25.05%

CNN

MR_v1.0 88.47% 36.47% 36.44% 36.47% 36.47% 67.66% 52.19%
8.88% 26.59% 26.59% 26.38% 26.59% 5.83% 14.31%

MR_v2.0 92.65% 30.90% 30.90% 30.90% 30.90% 38.00% 37.50%
4.40% 18.40% 18.40% 18.60% 18.40% 14.10% 13.40%

IMDB 89.62% 28.14% 28.12% 28.12% 28.13% 38.37% 32.12%
9.11% 55.79% 56.04% 54.96% 55.79% 41.83% 49.65%

LSTM

MR_v1.0 86.46% 48.15% 48.15% 48.44% 48.44% 50.75% 54.11%
86.46% 48.15% 48.15% 48.44% 48.44% 50.75% 54.11%

MR_v2.0 84.03% 19.90% 20.00% 19.90% 19.90% 25.40% 28.60%
18.55% 26.10% 26.10% 25.50% 26.10% 43.00% 22.40%

IMDB 94.02% 34.00% 34.01% 34.00% 34.01% 12.51% 36.22%
88.94% 34.19% 34.20% 33.35% 34.20% 40.03% 35.09%

Table 5: The attack success rates for eachTPTon the negative (upper row) and positive (lower row) sentiment reviews contained
in each dataset, for all black-box sentiment analysis machines.

Model Dataset TPT 1 TPT 2 TPT 3 TPT 4 TPT 5 TPT 6 TPT 7

FastText

MR_v1.0 16.80% 30.20% 30.55% 30.65% 30.66% 34.06% 32.82%
82.36% 39.24% 39.31% 39.37% 39.39% 35.97% 36.69%

MR_v2.0 96.50% 48.30% 48.30% 49.40% 47.60% 54.60% 52.40%
2.90% 27.30% 27.90% 27.20% 27.40% 19.20% 23.70%

IMDB 36.13% 24.23% 24.31% 24.49% 24.26% 27.16% 26.21%
61.97% 36.76% 36.64% 36.71% 36.92% 27.70% 32.74%

TextProcessing MR_v2.0 24.40% 3.90% 42.40% 3.90% 3.90% 3.60% 3.10%
63.10% 42.40% 3.90% 42.30% 42.40% 35.30% 38.40%

Aylien MR_v2.0 98.60% 72.20% 72.30% 72.10% 71.80% 81.50% 75.30%
1.70% 41.70% 41.60% 41.70% 41.70% 26.50% 37.80%

text as they achieve higher testing accuracies, compared to [30],
thus, being more difficult to be fooled. Furthermore, in all cases,
FGSM+NNS [17] and DeepFool+NNS [17] perform the worst. Fi-
nally, EvilText achieves 100%, 92.65% and 84.03% attack success rate
on LR, CNN and LSTM sentiment analysis machines, respectively,
on the MR_v2.0 dataset.

For the FastText black-box sentiment analysis machine (Figure
4(d)), EvilText achieves higher attack success rates, compared to the
other state-of-the-art ATGFs, on the MR_v1.0 dataset, i.e., 16.86%
and 45.36% higher attack success rate from TextBugger and Deep-
WordBug, respectively, but lower attack success rates on the IMDB
dataset than those reported in TextBugger [30] and DeepWordBug
[16]. In addition, EvilText achieves 96.50% attack success rate on the
MR_v2.0 dataset. Notice, that in Figure 4, we report the highest at-
tack success rates achieved on either negative or positive sentiment
reviews as the security implications are essentially the same.

Toxic Content Detection. Toxic content detection machines
apply ML, statistics and syntax rules for the detection of toxic-
related or illegal language use, e.g., insults, harassment and racism.
One example for the use of such NLP systems are the online com-
munication networks where the moderators are responsible for
ensuring the appropriateness of the conversation environment [30].

Table 6: The toxic content detection target models’ testing
accuracies used in TextBugger and EvilText ATGFs.

Model TextBugger [30] EvilText

LR 88.50% 89.72%
CNN 93.50% 95.44%
LSTM 90.70% 91.89%

In order to have a direct comparison with the state-of-the-art
ATGFs, we choose the same white-box machines used in sentiment
analysis section. However, for the attacks on black-box machines
we focus solely on FastText as it has been proven the most robust
classifier, allowing the lowest attack success rates on average [30].

Dataset. We evaluate EvilText’s performance on the popular
benchmark dataset provided by Kaggle’s Toxic Comment Clas-
sification competition6. This dataset contains a large number of
Wikipedia comments which have been labeled by human raters for
toxic behavior. There are six types of indicated toxicity, i.e., toxic,
severe toxic, obscene, threat, insult, and identity hate, in the original
dataset. We consider these categories as toxic and perform binary

6https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge.

Session 1: Adversarial Machine Learning AISec ’21, November 15, 2021, Virtual Event, Republic of Korea

7

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

MR_v1.0 IMDB
0

20

40

60

80

100

A
tt

a
c
k
 S

u
c
c
e
s
s
 R

a
te

 (
%

)

FGSM+NNS [17]

DeepFool+NNS [17]

TextBugger [30]

EvilText

(a) Target model: LR

MR_v1.0 IMDB
0

20

40

60

80

100

FGSM+NNS [17]

DeepFool+NNS [17]

TextBugger [30]

EvilText

(b) Target model: CNN

MR_v1.0 IMDB
0

20

40

60

80

100

A
tt

a
c
k
 S

u
c
c
e
s
s
 R

a
te

 (
%

)

FGSM+NNS [17]

DeepFool+NNS [17]

TextBugger [30]

EvilText

(c) Target model: LSTM

MR_v1.0 IMDB
0

20

40

60

80

100

DeepWordBug [16]

TextBugger [30]

EvilText

(d) Target model: FastText

Figure 4: Comparison of state-of-the-art ATGFs’ attack suc-
cess rates on the 3 white-box 4(a)-4(c) and 1 black-box 4(d)
sentiment analysis machines.

classification for toxic content detection on the balanced7 dataset
as Li et al. did in [30]. We do not perform any further filtering
based on the samples’ size (in terms of the total number of words)
or characters contained, e.g., filtering out samples with repeated
characters, as Li et al. [30] did. In total, we obtained 73,959 toxic
and non-toxic samples, respectively, having an average length of 69
words per sample, in contrast to TextBugger [30] which considers
only 12,630 toxic and non-toxic samples, respectively. Thus, our
attack success rates are reported on a more representative and less
biased dataset compared to [30].

Attacks’ Effectiveness and Efficiency. The testing accuracies for
the 3 white-box toxic content detection machines used, i.e., LR,
CNN and LSTM, are shown in Table 6. As shown, EvilText targets
toxic content detection models with higher performance compared
to state-of-the-art ATGF, namely TextBugger [30]. This means that
our white-boxmachines are essentially better at detecting the actual
toxicity in a given text, compared to [30]. This fact makes it harder
for our ATGF to evade the tested, DL-based or not, toxic content
detection machines. Nonetheless, our results indicate that all the
TPTs proposed, as part of EvilText framework, successfully evade
some of the most popular toxic content detection machines.

Table 7 shows the attack success rates for toxic and non-toxic
samples, contained in the Kaggle’s toxic comment classification
competition dataset, for all TPTs. As shown, the LR classifier is
more susceptible to toxic adversarial samples compared to the other
two DL-based NLP models, i.e., CNN and LSTM. However, the LR
classifier is extremely robust on classifying non-toxic adversarial
samples as we manage to achieve no more than 1.92%, whereas for
the other two DL-based models we achieve 6.91% and 36.52% attack
success rates, respectively.

7We randomly select an equal number of non-toxic and toxic samples.

LR CNN LSTM
0

20

40

60

80

100

A
tt

a
c
k
 S

u
c
c
e
s
s
 R

a
te

 (
%

)

FGSM+NNS [17]

DeepFool+NNS [17]

TextBugger [30]

EvilText

(a) White-box Machines
0

20

40

60

80

100 TextBugger [30]

EvilText

DeepWordBug [16]

(b) Black-box Machine (FastText)

Figure 5: Comparison of state-of-the-art ATGFs’ attack suc-
cess rates on 3white-box (LR, CNN, LSTM – 5(a)) and 1 black-
box (FastText – 5(b)) toxic content detection machine.

In Figure 5, we compare EvilText’s performance on evading
white-box and black-box toxic content detection machines, against
the state-of-the-art ATGFs. Again, we report attack success rates
on both toxic and non-toxic samples in contrast to other ATGFs
which focus solely on attacking toxic samples. As shown, our
TPTs are highly effective outperforming, in many cases, the current
state-of-the-art ATGFs. Similar to the sentiment analysis scenario,
FGSM+NNS [17] and DeepFool+NNS [17] achieve the lower attack
success rates when targeting white-box toxic content detection
machines. In addition, the only two cases where TextBugger [30]
achieves better attack success rates is on the LSTM (white-box)
and FastText (black-box) target models. However, these results can
be explained for two reasons. First, for training our target models,
we utilize a much larger dataset, i.e., 73,959 toxic and non-toxic
samples instead of 12,630 toxic and non-toxic samples used in [30],
as we do not perform the strict filtering 8 procedure described in
[30] that may exclude a large number of legitimate samples. Second,
as shown in Table 6, our trained white-box classifiers are more ro-
bust on detecting the actual toxicity in a given text as they achieve
higher testing accuracies, compared to [30], making them more
difficult to be fooled. Finally, EvilText reports 76.82% attack success
rate on the non-toxic to toxic sample type of attack, whereas the
other state-of-the-art ATGFs do not report any results at all.

User Study. In order to conclude about whether or not our TPTs
negatively affect either human understanding or the semantics of
the initial text, we conduct a user study with (randomly selected)
human participants. By doing so, we will observe whether or not
the applied perturbations will change the human perception of
the text’s sentiment or toxicity. Our user study follows the same
setup as [30]. After randomly choosing two adversarial texts crafted
with each TPT, we compose a questionnaire with 14 questions in
total, where the human participants are given evasion-successful
adversarial texts, i.e., adversarial samples that have successfully
fooled the target classifiers, and are asked to provide the initial
(non-perturbed) text, in a given text-box, along with the difficulty
level faced when interpreting each adversarial text, i.e., Likert scale
questions with 5 points [6]. In this way, we are able to perform, not
only a quantitative analysis, but also a qualitative analysis, which

8We advise researchers to perform the least possible filtering on the datasets, in order to:
(a) avoid any bias, (b) retain the largest possible average word length, and (c) facilitate
the accurate comparisons with other ATGFs.

Session 1: Adversarial Machine Learning AISec ’21, November 15, 2021, Virtual Event, Republic of Korea

8

Table 7: The attack success rates for each TPT on the toxic (upper row) and non-toxic (lower row) samples for all tested white-
box (WB) and black-box (BB) toxic content detection machines.

Model BB or WB TPT 1 TPT 2 TPT 3 TPT 4 TPT 5 TPT 6 TPT 7

LR WB 99.99% 94.76% 94.77% 94.76% 94.76% 94.40% 94.40%
0% 1.88% 1.89% 1.89% 1.89% 1.92% 1.92%

CNN WB 99.69% 91.68% 91.65% 88.51% 91.68% 88.29% 91.15%
0.25% 4.13% 4.14% 4.12% 4.13% 6.91% 4.36%

LSTM WB 60.56% 72.22% 72.21% 72.23% 72.22% 71.04% 72.66%
36.52% 12.76% 12.75% 16.92% 12.75% 13.20% 12.15%

FastText BB 21.11% 31.61% 31.65% 31.60% 31.63% 37.56% 33.44%
76.82% 76.65% 76.62% 76.60% 76.63% 67.85% 74.58%

is vital when it comes to measuring human understanding 9. For
the quantitative analysis, we utilize Edit Distance (ED) and Jaccard
Similarity Coefficient (JSC) metrics for evaluating the similarity be-
tween the original/legitimate texts and the texts given as a response
by the human respondents. In this way, we are able to conclude
about whether or not, the human readers are able to interpret (and
with what ease) the given adversarial texts.

After gathering the responses from 51 participants we came up
with the following graphs: (a) average difficulty of interpreting
all given perturbed texts (Fig. 6(a) red bars), (b) most difficult to
be interpreted question (Fig. 6(a) blue bars), (c) least difficult to
be interpreted question (Fig. 6(a) green bars), (d) interpretation
difficulty distribution (Fig. 6(b)), and (e) average ED and JSC for
each question (Fig. 7).

As shown in Figure 6(a) (red bars), the largest percentage of the
respondents, i.e., 91.50%, answered that the questions were “very
easy” or “easy” to interpret. In fact, only the 2.39% of the respondents
found the questions “difficult” or “very difficult” to interpret.

In Figure 6(a) (blue bars), the most difficult to be interpreted
question, along with its interpretation difficulty, is shown. Those
results were expected as TPT 1 indeed perturbs the most, a given
legitimate text. Nonetheless, even with this TPT the largest per-
centage of the respondents, i.e., 62.74%, found the perturbed texts
“very easy” or “easy” to interpret, whereas only the 11.76% of the
respondents found the perturbed texts “difficult” or “very difficult”
to interpret. It is worth noting that even the respondents that found
specific adversarial texts “difficult” or “very difficult” to recognize
have eventually interpreted them correctly. In other words, 100%
of the respondents successfully interpreted all adversarial texts
produced by our ATGF.

In Figure 6(a) (green bars), the least difficult to be interpreted
question, along with its interpretation difficulty, is shown. Again,
those results were expected as inserting spaces between nega-
tive/positive sentiment or toxic/non-toxic words’ characters, i.e.,
TPT 6, indeed perturbs the least a given legitimate text. This TPT
demonstrates excellent human readability preservation as only 2%
of the respondents answered that the perturbed text “The sort of
"little" film which studios used to e x c e l at but seldom make
anymore” was “very difficult” or “difficult” to interpret.

Figure 6(b) shows the interpretation difficulty distribution of the
responses gathered. As shown, the highest concentration level

9Note that we are not obliged to get an IRB approval as we do not collect any demo-
graphic information which might be sensitive.

(a)

1 2 3 4 5

Interpretation Difficulty (1-Very Easy, 5-Very Difficult)

0.0

0.2

0.4

(b)

Figure 6: Average interpretation difficulty for the most dif-
ficult (6(a)-blue bars), least difficult (6(a)-green bars), and all
given perturbed texts (6(a)-red bars), and the distribution of
interpretation difficulty faced when recognizing the given
adversarial texts 6(b).

peaks at the “very easy” response and decreases as it moves to
the more difficult to interpret answers. The majority of the re-
spondents considers the perturbed texts “very easy” or “easy” to
interpret, thus, demonstrating EvilText’s capabilities on preserving
the original text’s semantics and human readability.

Figure 7(a) shows that the average ED for each question is very
low, meaning that minor modifications, i.e., insertions, deletions,
or substitutions, have to be made in order for the actual/original
non-perturbed text to match the given by the respondents text. The
highest average ED is 1.64 for the most difficult question shown
in Figure 6(a). However, even the highest average ED, i.e., 1.64,
is very low, meaning very high similarity between the original
and the given by the respondent, texts. Figure 7(b) shows that the
average JSC for each question is very high, the lowest being 98.53%.
Again, this means thatminor differences, between the original/non-
perturbed and the given by the respondent, texts, exist. However,
even 98.53% JSC is considered to be a very high similarity percentage.

Session 1: Adversarial Machine Learning AISec ’21, November 15, 2021, Virtual Event, Republic of Korea

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Question no.

0.0

0.5

1.0

1.5
E
D

(a) Average ED

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Question no.

0.96

0.98

1.00

JS
C

(b) Average JSC

Figure 7: Average ED and JSC for each question (14 in total).

EvilText outperforms state-of-the-art ATGFs in terms of original
text’s semantics and human readability preservation. In particular,
100% of the presented adversarial text has been correctly interpreted
by the human participants. In addition, the average ED and JSC
for all questions is 0.21 and 99.67%, respectively, which is a clear
evidence regarding the original text’s semantics and human read-
ability preservation capabilities of EvilText ATGF. Observing all
the results reported in this section, we conclude that EvilText is an
effective and efficient ATGF that can successfully evade some of
the most popular NLP machines having little impact on either the
human understanding or the original text’s semantics.

Transferability.The transferability property of adversarial sam-
ples is of major importance for effective ATGFs [46]. The adversarial
samples crafted for a specific NLP machine M1 will also be mis-
classified by any other NLP machineM2 (M1 , M2), as long as the
transferability property holds between M1 and M2 [36]. In other
words, if the transferability property holds, the attacks offered from
a particular ATGF can be also extended to any other potential sys-
tem. Thus, we advise NLP services’ operators to take our ATGF’s
attacks into explicit consideration.

The attack success rates reported in Tables 4, 5 & 7, showcase the
transferability of our attacks on a variety of target white-box/black-
box NLP machines. our attacks are black-box based, thus, not tai-
lored to any specific NLP machine or dataset. In addition, EvilText
does not require the confidence score neither the output label from
the target model, in constrast to other approaches found in the
literature [16, 30, 31]. As a result, EvilText can target a wide-range
of NLP systems without the need of any tuning or modification.

5 POTENTIAL DEFENCES
We suggest 3 defence strategies that could be followed in order
to mitigate, but not eliminate, the risk against our attacks. The
effectiveness, however, of each defence mechanism (and potential
combinations of them) is out of scope; we leave this as a future
research direction.

Spelling Check. Context-aware spelling checkers, such as Mi-
crosoft Azure10, can significantly enhance the performance of NLP
systems detecting, in most cases, adversarial text crafting meth-
ods based on spelling errors. In its simplest form, a spell checker
will essentially restrict the use of sentences that contain spelling
errors. Nonetheless, this is not a good practise as human writers
are very prone to (unintentional) spelling errors. Thus, employing
such a technique will result in a high percentage of false positives.
Moreover, spell checking cannot be used to prevent sophisticated
attacking schemes for it is trivial to create ambiguous sentences
that can result in false positives by changing even single words in a
document. For instance, a possible spelling correction may result
in a wrong sentiment prediction by (falsely) correcting a wrongly
spelled word.

Li et al. [30] showed that spelling checkers cannot mitigate the
risk against sophisticated TPTs which are not based on misspelling
perturbations. Testing the aforementioned spell checker we observe
the same results as Li et al. In particular, Microsoft Azure spell
checker affects the performance of TPTs that do not make use of
the unicode map, i.e., TPTs 4 and 6, due to their wrong spelling
nature. However, the rest of the TPTs remain unaffected.

Adversarial Training. In adversarial training we train a par-
ticular classifier with, in addition to legitimate-ones, adversarial
input samples. As a result, the DL-based classifier will exhibit in-
creased performance on classifying adversarial texts [30]. However,
the three limitations of this defence method are: (a) the attackers
do not make their approaches of crafting adversarial text public
and thus adversarial training does not perform well on unknown
adversarial attacks, (b) a large number of adversarial text samples,
created using as many as possible TPTs, is needed for the training
process and most importantly (c) adversarial training might reduce
the model’s performance, i.e., its accuracy when no adversary ex-
ists [41]. In addition, the literature showed that it is rather difficult
to produce a robust network using adversarial training, even for
black-box settings where the attacker has restricted information on
the target model [39]. Thus, the aforementioned facts along with
the substantially large space of possible TPTs make the use of this
defence strategy a challenging process.

However, we plan to explore the potential effectiveness of adver-
sarial training when the defender has access to data samples which
are crafted using: (a) different from our TPTs, (b) some different and
some similar to our TPTs, and (c) the same as our TPTs. In addition,
the volume of adversarial training instances required to effectively
detect such adversarial samples should be estimated. We leave this
as a future research direction.

Replacing UnknownWords. Our unicode map (see Section 2)
can be utilized (in reverse order) to replace the perturbed charac-
ters with the original English alphabet letters in order to craft the
initial non-perturbed text. As a result, the NLP models will (most
probably) correctly detect the sentiment/toxicity of a given input
text considering all words’ embeddings. Thus, this defence strategy,
which is essentially the equivalent of restricting the use of unicode
characters, is a potentially effective, yet intrusive, mechanism for
mitigating our attacks. Finally, this defence strategy highlights the

10https://azure.microsoft.com/zh-cn/services/cognitive-services/spell-check/.

Session 1: Adversarial Machine Learning AISec ’21, November 15, 2021, Virtual Event, Republic of Korea

10

https://azure.microsoft.com/zh-cn/services/cognitive-services/spell-check/

contribution of delivering such a similarity map for mitigating such
security risks.

6 DISCUSSION
Sum up.Observing the results reported in Tables 4, 5 and 7 one can
easily see that the attack success rates vary across different TPTs
and target models. This is because different TPTs affect different
target ML models (due their underlying structure). Thus, we delib-
erately design EvilText’s architecture in such a way for allowing
attackers to easily extend the offered TPTs with additional TPTs
(or combine existing TPTs) that evade specific target NLP systems.

The average attack success rate on negative sentiment reviews
contained in the three benchmark datasets, i.e., MR_v1.0, MR_v2.0,
and IMDB, is 10.75% higher than the attack success rate on positive
sentiment reviews. This indicates that negative sentiment reviews
are more prone to perturbation attacks than positive sentiment
reviews. The same fact holds for the toxic content detection dataset
as the average attack success rate on toxic samples is 41.46% higher
than the attack success rate on non-toxic samples. Interestingly,
our attacks are more effective on negative sentiment/toxic samples
rather than positive sentiment/non-toxic samples.

Limitations. For EvilText to be successfully applied, the posi-
tive/negative opinion words lists must be available. Nonetheless,
this might not be the case in other application scenarios, where
such information is not available to the adversary. Furthermore,
EvilText, similar to TextBugger, DeepFool and DeepWordBug, is
limited in the two-class sentiment/toxicity setting; a more sophisti-
cated attack strategy is required in the multiclass setting. This is
because in the multiclass setting, it can be more difficult to identify
which words need to be changed and how they need to be changed
for achieving the desired misclassification.

7 FUTURE DIRECTIONS
Other, similar to ours, TPTs that may improve EvilText’s perfor-
mance should be defined and evaluated. For example, TPTs that
only perturb a fraction of the sentiment/toxicity defining words’
letters should be evaluated for their performance, in terms of both
evasion success rate and human readability preservation. Moreover,
sophisticated attacking methods that will infiltrate to an existing
black-box NLP machine, exposing valuable to the attacker infor-
mation about the model’s internal structure and hyper-parameter
values, should be explored. Furthermore, our TPTs should be evalu-
ated against recent transformer-based target NLP models, such as
BERT [10], which demonstrate high performance in similar NLP
tasks. In addition, an empirical evaluation for the performance
of the suggested defences (and potential combinations of them),
in terms of mitigating such TPTs, is considered critical to be per-
formed. Nonetheless, in order to develop a generic defence strategy
that effectively protects NLP systems from a wide-range of similar
adversarial attacks the entire (or a large portion) of the possible at-
tacks spectrum has to be explored. Finally, our attacks are oriented
only in the English language and thus future extensions of EvilText
should also include attacks on other languages.

8 RELATEDWORK
Gao et al. [16] and Liang et al. [31] focus on the development
of ATGFs which are mainly based on inserting extra characters,
modifying and/or deleting existing ones. Li et al. [30] proposed
an ATGF, namely TextBugger, which perturbs input samples by
deliberately misspelling important words, and by replacing a few
words, which are obtained by nearest neighbour searching in the
embedding space, without changing the original meaning. Our
ATGF not only outperforms TextBugger in effectiveness but also
in efficiency. In particular, EvilText is substantially more efficient
than TextBugger as we eliminate the need for iteratively query-
ing the target NLP model (each time excluding one word) for de-
tecting the sentiment/toxicity defining words. [16, 30] and [31]
evaluate their attacks in both white-box and black-box attack set-
tings, whereas [14, 38] and [43] evaluate their attacks in white-box
setting only. In addition, [16, 30, 31] focus solely on the negative sen-
timent/toxic sample to positive sentiment/non-toxic sample type
of attack, whereas in our case we also examine the opposite one.
Some works generate adversarial texts by replacing a word with
one legible but OOV word [4, 16, 20], whereas others utilize genetic
algorithms for replacing words only with semantically similar ones
[1]. Cheng et al. [8] proposed adversarial attacks targeting, however,
sequence-to-sequence NLP models. Finally, some methods enrich
the legitimate text with the addition of distracting sequences of text
for causing a misclassification [23]. However, these methods have
significantly high overhead as intensive manual effort is required
for smoothening the perturbed text meaning.

9 CONCLUSION
EvilText is an effective and efficient ATGF used to perturb legitimate
text for causing some of the most popular NLP machines to misbe-
have. It generates high-quality adversarial texts that successfully
evade NLP systems, being at the same time painless for humans
to interpret. This fact, in combination with the high transferabil-
ity of our attacks, disclose great risks for many real-world NLP
text-filtering systems.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for helping us to improve the
final version of this paper. In addition, we thank Stelios Tymvios
for his contribution to early drafts of this paper. This work was
supported by the European Union’s Horizon 2020 research and
innovation programme under grant agreements No. 830929 (Cyber-
Sec4Europe) and the Marie Skłodowska-Curie grant agreement No.
101007673.

REFERENCES
[1] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-JhangHo,Mani Srivastava,

and Kai-Wei Chang. 2018. Generating natural language adversarial examples.
arXiv preprint arXiv:1804.07998 (2018).

[2] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. 2017. Synthe-
sizing robust adversarial examples. arXiv preprint arXiv:1707.07397 (2017).

[3] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug
Tygar. 2006. Can machine learning be secure?. In ASIACCS. ACM, 16–25.

[4] Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic and natural noise both break
neural machine translation. arXiv preprint arXiv:1711.02173 (2017).

[5] Battista Biggio, Giorgio Fumera, and Fabio Roli. 2011. Design of robust classifiers
for adversarial environments. In SMC. IEEE, 977–982.

Session 1: Adversarial Machine Learning AISec ’21, November 15, 2021, Virtual Event, Republic of Korea

11

[6] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4–7.

[7] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of
neural networks. In EuroS&P. IEEE, 39–57.

[8] Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang, and Cho-Jui Hsieh. 2018.
Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Ad-
versarial Examples. (2018). arXiv:cs.LG/1803.01128

[9] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. 2017.
EMNIST: an extension of MNIST to handwritten letters. arXiv preprint
arXiv:1702.05373 (2017).

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[11] Antreas Dionysiou, Michalis Agathocleous, Chris Christodoulou, and Vasilis
Promponas. 2018. Convolutional Neural Networks in Combination with Support
Vector Machines for Complex Sequential Data Classification. In ICANN. Springer,
444–455.

[12] Antreas Dionysiou and Elias Athanasopoulos. 2020. SoK: Machine vs. Machine–
A Systematic Classification of Automated Machine Learning-Based CAPTCHA
Solvers. Computers & Security (2020), 101947.

[13] Antreas Dionysiou, Vassilis Vassiliades, and Elias Athanasopoulos. 2021. Hon-
eyGen: Generating Honeywords Using Representation Learning. Association for
Computing Machinery, New York, NY, USA, 265–279. https://doi.org/10.1145/
3433210.3453092

[14] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. HotFlip: White-
Box Adversarial Examples for Text Classification. Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
(2018), 31–36.

[15] Anthony Y Fu, Xiaotie Deng, LiuWenyin, and Greg Little. 2006. The methodology
and an application to fight against unicode attacks. In SOUPS. 91–101.

[16] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. 2018. Black-box gen-
eration of adversarial text sequences to evade deep learning classifiers. In SPW.
IEEE, 50–56.

[17] Zhitao Gong, Wenlu Wang, Bo Li, Dawn Song, and Wei-Shinn Ku. 2018. Adver-
sarial texts with gradient methods. arXiv preprint arXiv:1801.07175 (2018).

[18] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[19] Daniel Holden, Jun Saito, Taku Komura, and Thomas Joyce. 2015. Learning
motion manifolds with convolutional autoencoders. In SIGGRAPH. ACM, 18.

[20] Hossein Hosseini, Sreeram Kannan, Baosen Zhang, and Radha Poovendran. 2017.
Deceiving google’s perspective api built for detecting toxic comments. arXiv
preprint arXiv:1702.08138 (2017).

[21] Minqing Hu and Bing Liu. 2004. Mining and summarizing customer reviews. In
SIGKDD. ACM, 168–177.

[22] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and JD
Tygar. 2011. Adversarial machine learning. In AISec. ACM, 43–58.

[23] Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating reading
comprehension systems. in EMNLP (2017), 2021–2031.

[24] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,
and Tomas Mikolov. 2016. FastText.zip: Compressing text classification models.
arXiv preprint arXiv:1612.03651 (2016).

[25] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. in
EMNLP (10 2014), 1746–1751.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In NeurIPS. 1097–1105.

[27] Brandon Laughlin, Christopher Collins, Karthik Sankaranarayanan, and Khalil
El-Khatib. 2019. A Visual Analytics Framework for Adversarial Text Generation.
arXiv preprint arXiv:1909.11202 (2019).

[28] Yann LeCun, Yoshua Bengio, et al. 1995. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks 3361,

10 (1995), 1995.
[29] Yann LeCun, LD Jackel, Leon Bottou, A Brunot, Corinna Cortes, JS Denker,

Harris Drucker, I Guyon, UA Muller, Eduard Sackinger, et al. 1995. Comparison
of learning algorithms for handwritten digit recognition. In ICANN, Vol. 60. Perth,
Australia, 53–60.

[30] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2019. TextBugger:
Generating Adversarial Text Against Real-world Applications. in NDSS (2019).
https://doi.org/10.14722/ndss.2019.23138

[31] Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, and Wenchang Shi.
2018. Deep Text Classification Can Be Fooled. Proceedings of the 27th International
Joint Conference on Artificial Intelligence (2018), 4208–4215.

[32] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and
Christopher Potts. 2011. Learning word vectors for sentiment analysis. In 49th
ACL: Human language technologies. ACL, 142–150.

[33] Bo Pang and Lillian Lee. 2004. A Sentimental Education: Sentiment Analysis
Using Subjectivity Summarization Based on Minimum Cuts. In 42nd ACL. ACL,
271–es.

[34] Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for
sentiment categorizationwith respect to rating scales. In 43rd ACL. ACL, 115–124.

[35] Bo Pang and Lillian Lee. 2008. Opinion Mining and Sentiment Analysis. Founda-
tions and Trends in Information Retrieval 2 (2008), 1–135.

[36] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik,
and Ananthram Swami. 2017. Practical Black-Box Attacks Against Machine
Learning. In ASIACCS. ACM, New York, NY, USA, 506–519.

[37] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In EuroS&P. IEEE, 372–387.

[38] Nicolas Papernot, Patrick McDaniel, Ananthram Swami, and Richard Harang.
2016. Crafting adversarial input sequences for recurrent neural networks. In
MILCOM. IEEE, 49–54.

[39] Sanglee Park and Jungmin So. 2020. On the Effectiveness of Adversarial Train-
ing in Defending against Adversarial Example Attacks for Image Classification.
Applied Sciences 10, 22 (2020), 8079.

[40] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In EMNLP. 1532–1543.

[41] Aditi Raghunathan, SangMichael Xie, Fanny Yang, John CDuchi, and Percy Liang.
2019. Adversarial training can hurt generalization. arXiv preprint arXiv:1906.06032
(2019).

[42] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1985. Learning
internal representations by error propagation. Technical Report. California Univ
San Diego La Jolla Inst for Cognitive Science.

[43] Suranjana Samanta and Sameep Mehta. 2017. Towards crafting text adversarial
samples. arXiv preprint arXiv:1707.02812 (2017).

[44] David Sculley, Gabriel Wachman, and Carla E Brodley. 2006. Spam Filtering
Using Inexact String Matching in Explicit Feature Space with On-Line Linear
Classifiers.. In TREC.

[45] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[46] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil
Jain. 2019. Adversarial attacks and defenses in images, graphs and text: A review.
arXiv preprint arXiv:1909.08072 (2019).

[47] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional
networks for text classification. In NIPS. 649–657.

[48] Ye Zhang and Byron Wallace. 2017. A Sensitivity Analysis of (and Practitioners’
Guide to) Convolutional Neural Networks for Sentence Classification. In IJCNLP.
AFNLP, Taipei, Taiwan, 253–263.

[49] Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018. Generating natural adver-
sarial examples. in ICLR (2018).

Session 1: Adversarial Machine Learning AISec ’21, November 15, 2021, Virtual Event, Republic of Korea

12

http://arxiv.org/abs/cs.LG/1803.01128
https://doi.org/10.1145/3433210.3453092
https://doi.org/10.1145/3433210.3453092
https://doi.org/10.14722/ndss.2019.23138

	Abstract
	1 Introduction
	2 EvilText
	3 Attacks
	4 EvilText Evaluation
	5 Potential Defences
	6 Discussion
	7 Future Directions
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

